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Abstract Here, we establish a polynomial identity in three variables a, b, c, and with the degree of the7

polynomial given in terms of two integers L , M . By letting L and M tend to infinity, we get the 1993 Alladi–8

Gordon q-hypergeometric key-identity for the generalized Schur Theorem as well as the fundamental Lebesgue9

identity by two different choices of the variables. This polynomial identity provides a generalization and a10

unified approach to the Schur and Lebesgue theorems. We discuss other analytic identities for the Lebesgue11

and Schur theorems and also provide a key identity (q-hypergeometric) for Andrews’ deep refinement of the12

Alladi-Schur theorem. Finally, we discuss a new infinite hierarchy of identities, the first three of which relate13

to the partition theorems of Euler, Lebesgue, and Capparelli, and provide their polynomial versions as well.14

Mathematics Subject Classification 05A15 · 05A17 · 11P81 · 11P8315

1 Introduction16

One of the fundamental q-hypergeometric identities is Lebesgue’s identity:17

∞∑

i=0

qTi (−cq)i

(q)i
=

∞∏

m=1

(1 + qm)(1 + cq2m) =
∞∏

m=1

(1 + cq2m)

(1 − q2m−1)
. (1.1)18

19

The importance of (1.1) is due to the fact that when c = 0 it yields Euler’s series and product generating20

functions for partitions into distinct parts, and with the dilations and translations given by21

dilation q �→ q2, translations c �→ cq−1 or c �→ cq, (1.2)22
23

it yields the q-hypergeometric identities for the Little Göllnitz partition theorems (see Theorem G below).24

In [8], Alladi–Gordon gave the following combinatorial interpretation of Lebesgue’s identity as a weighted25

partition theorem along with a combinatorial proof:26

Theorem L Let D(n; j) denote the number of partitions of π : b1 + b2 + · · · + bν = n into distinct parts bi ,27

such that there are j gaps bi − bi+1 ≥ 2 among the parts for i = 1, 2, . . . ν, with the convention bν+1 = 0.28
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Let C(n; k) denote the number of partitions of n with even parts non-repeating, such that there are precisely29

k even parts. Then30

∑

j

D(n, j)(1 + c) j =
∑

k

C(n; k)ck .31

32

Under the transformations in (1.2), the two Göllnitz identities that emerge are:33

∞∑

i=0

qi2+i (−cq−1; q2)i

(q2; q2)i
=

∞∏

m=1

(1 + q4m)(1 + q4m−2)(1 + cq4m−3), (1.2a)34

35

and36

∞∑

i=0

qi2+i (−cq; q2)i

(q2; q2)i
=

∞∏

m=1

(1 + q4m)(1 + q4m−2)(1 + cq4m−1). (1.2b)37

38

The Little Göllnitz theorem(s) [26], which are the partition interpretations of (1.2a) and (1.2b), are:39

Theorem G For i = 1, 2, let gi (n; k) denote the number of partitions of n into parts that differ by ≥ 2, with40

strict inequality if a part is odd, having k odd parts, where the smallest part is ≥ i .41

For i = 1, 2, let Gi (n; k) denote the number of partitions into distinct parts, which are of the form42

2, 4, or 2i − 1 (mod 4), and with k parts ≡ 2i − 1 (mod 4). Then43

gi (n; k) = Gi (n; k), for i = 1, 2.44
45

Remark 1.1 It is only at the undilated level, that is, for Lebesgue’s identity, the partition theorem (Theorem46

L) is a weighted partition theorem. Once we have the dilation as in (1.2), Theorem G is a regular partition47

theorem (not weighted).48

The celebrated 1926 partition theorem of Schur is:49

Theorem S Let B(n) denote the number of partitions of n into distinct parts ≡ ±1 (mod 3).50

Let S(n) denote the number of partitions of n into parts that differ by at least 3, with strict inequality if a51

part is a multiple of 3. Then52

S(n) = B(n).53
54

Remark 1.2 Note one similarity in the difference conditions in Theorems G and S, namely, in Theorem G, the55

gap between parts is ≥ 2 with strict inequality if a part is odd, while in Theorem S, the gap between parts is56

≥ 3 with strict inequality if a part is a multiple of 3. For the remainder of this manuscript, we will refer to the57

partitions enumerated by S(n) as Schur partitions.58

Gleissburg [24] showed that Theorem S can be refined to59

B(n; k) = S(n; k),60
61

where B(n; k) and S(n; k) denote the number of partitions enumerated by B(n) and S(n) with the condition62

that the number of parts is k, and with the convention that parts which are multiples of 3 are counted twice by63

S(n; k).64

In 1993, Alladi and Gordon [9] proved a two-parameter refinement and generalization of Theorem S, and65

in doing so, for the first time, cast Theorem S in the form of a q-hypergeometric identity, which they dubbed66

a key-identity:67

∑

α,β,γ

aα+γ bβ+γ qTs+Tγ

(q)α(q)β(q)γ
=
∑

i, j

ai b j qTi +Tj

(q)i (q) j
=

∞∏

i=1

(1 + aqi )(1 + bqi ), (1.3)68

69

where s = α + β + γ .70

By using the transformations71

(dilation) q �→ q3, and (translations) a �→ aq−2, b �→ bq−1 (1.4)72
73

in (1.3), the following strong refinement of Theorem S falls out:74
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Theorem A-G Let B(n; i, j) denote the number of partitions of n into i distinct parts ≡ 1 (mod 3), and j75

distinct parts ≡ 2 (mod 3).76

Let S(n;α, β, γ ) denote the number of partitions of the type enumerated by S(n), with the condition that77

the number of parts ≡ 1, 2, 3 (mod 3) is α, β, γ respectively. Then78

∑

α+γ=i,β+γ= j

S(n; α, β, γ ) = B(n; i, j).79

80

Notice that in Theorem A-G, the total number of parts is81

i + j = α + γ + β + γ = α + β + 2γ,82
83

and so the parts that are multiples of 3 are counted twice. In [9], the combinatorial interpretation of the key-84

identity was given in terms of partitions into parts occurring in three possible colors: two primary colors, a85

and b, and one secondary color, ab the combination of the other two, with gap conditions on the colored parts,86

and with the condition that the parts occurring in the secondary color are counted twice. Under the dilation87

and translations given in (1.4), the parts in primary colors a, b correspond to parts ≡ 1, 2 (mod 3), and parts88

in secondary color are then the multiples of 3.89

The colored partition version (generalization) of Theorem A-G is proved combinatorially (bijectively) in90

[9]. The combinatorial proofs of the weighted partition Theorem L given in [8], and of the colored partition91

version of Theorem A-G in [9] are similar, with the main difference being in the final step, where in the case92

of Theorem L, a certain choice could be made; this is why D(n; j) has a weight (1 + c) j attached to it. Since93

the combinatorial proofs of Theorem L and the colored generalization of Theorem A-G are so similar, it is94

natural to ask if there is a unified q-hypergeometric approach to Lebesgue’s identity (1.1) and the key-identity95

(1.3) for the generalized Schur theorem? After establishing a finite analog of Lebesgue’s identity in Sect. 3,96

we provide in Sect. 6 a new polynomial identity, from which, under two different specializations, the finite97

Schur and Lebesgue identities fall out. Following this, in Sect. 6, we provide a q-hypergeometric key-identity98

for Andrews’ deep refinement of the Alladi–Schur Theorem. Finally, in Sect. 7, we introduce a new infinite99

hierarchy of identities of which the first three correspond to the partition theorems of Euler, Lebesgue, and100

Capparelli; we provide a polynomial version of this infinite hierarchy as well.101

To aid the reader, we will conclude this introductory section by recalling basic facts, along with notational102

conventions, that are used throughout the paper.103

For complex numbers a, q , we use the q-Pochhammer symbols104

(a)n = (a; q)n :=
n−1∏

j=0

(1 − aq j ),105

106

and107

(a; q)∞ = lim
n→∞(a; q) j =

∞∏

j=0

(1 − aq j ), if |q| < 1.108

109

The variable q is called the base. We often write (a)n in place of (a; q)n suppressing q , but when the base is110

anything other than q , it will be displayed.111

We also make use of the q-binomial coefficients given by112

[
n

m

]
=
[

n

m

]

q
:= (q)n

(q)m(q)n−m
, for 0 ≤ m ≤ n (1.5)113

114

which are polynomials in q of degree m(n − m). When n ≥ 0, the q-binomial coefficients have value 0 when115

m < 0 or when m > n. This is because 1/(q) j = 0 when j < 0.116

We shall often use the following identity involving the q-binomial coefficients:117

(−cq)n =
∑

k≥0

ckqTk

[
n

k

]
, (1.6)118

119

where, here and throughout, Tk = k(k +1)/2 is the k-th Triangular number. In some instances, the expressions120

involving the q-Pochhammer symbol and the q-binomial coefficients presented in this paper remain valid with121

n < 0. In such cases, the meaning of
[n

k

]
and (−cq)n is as [23]. Furthermore, (1.6) remains valid for any integer122

n (even n < 0) as can be seen from [23, Thm 4.10].123
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2 A very short proof of the key identity for Schur’s theorem124

The proof of the key identity (1.3) given in [9] utilizes the q-Chu–Vandermonde summation. A second proof125

of (1.3) was given in [9] by rewriting it suitably and then using a Durfee rectangles argument. In October 2022,126

the second author communicated [4] to George Andrews a very short proof of the key identity (1.3), which127

we give here because this proof and the underlying combinatorics motivate the construction of the polynomial128

identity that provides the unification:129

Proof Begin by expanding (−aq)∞ and by splitting (−bq)∞ as follows:130

(−aq)∞(−bq)∞ =
∞∑

i=0

ai qTi

(q)i
(−bq)i (−bqi+1)∞. (2.1)131

132

Next, expand (−bq)i and (−bqi+1)∞, and substitute these expansions in (2.1) to get133

(−aq)∞(−bq)∞ =
∞∑

i=0

ai qTi

(q)i

⎛

⎝
i∑

j=0

b j qTj

[
i

j

]⎞

⎠
( ∞∑

�=0

b�qT�+i�

(q)�

)
134

=
∞∑

i=0

ai qTi

⎛

⎝
i∑

j=0

b j qTj

(q) j (q)i− j

⎞

⎠
( ∞∑

�=0

b�qT�+i�

(q)�

)
. (2.2)135

136

At this stage, consider the following replacements in (2.2)137

j �→ γ, i − j = i − γ �→ α, and � �→ β, (2.3)138
139

to rewrite the expression on the right in (2.2) as140

∑

α,β,γ

aα+γ bβ+γ qTs+Tγ

(q)α(q)β(q)γ
, (2.4)141

142

where we have used the identity143

Tn + Tm + nm = Tn+m144
145

for Triangular numbers, and s = α + β + γ . The key identity follows from (2.1) and (2.4). �	146

Remark 2.1 In [9], the first two steps in the combinatorial proof of the generalized Schur theorem were as147

follows: Start with a vector partition < πa, πb > in which πa is a partition into i parts in color a, all distinct,148

and πb is a partition into j parts in color b, all distinct. Then separate the parts of πb into those that are ≤ i149

in size and those that are > (i + 1) in size. There are six steps in that combinatorial proof, but these first two150

steps correspond to151

ai qTi

(q)i
(−bq)i (−bqi+1)∞,152

153

and this motivated the starting point of the short proof of the key identity.154

3 A finite version of Lebesgue’s identity155

The q-binomial coefficients
[n

m

]
have the property that156

lim
n→∞

[
n

m

]
= 1

(q)m
. (3.1)157

158

So, a natural way to construct polynomial analogs of q-hypergeometric identities is to bring in q-binomial159

coefficients in place of terms like 1/(q)m . We now establish a polynomial version of Lebesgue’s identity1:160

1 An equivalent identity appears in [30] in a different form. However, our approach is different.
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Theorem 3.1 For all positive integers M, we have161

M∑

i=0

qTi (−cq)i

[
M

i

]
= (−q)M

(
M∑

k=0

ckq2Tk

(q2; q2)k
(q M−k+1)k

)
.162

163

Proof Begin by expanding (−cq)i and using (1.5) to rewrite the left-hand side of the expression in Theorem164

3.1 as165

M∑

i=0

qTi (−cq)i

[
M

i

]
=

M∑

i=0

qTi

(
i∑

k=0

ckqTk

[
i

k

])[
M

i

]
=
∑

i,k

ckqTi +Tk
(q)M

(q)k(q)i−k(q)M−i
. (3.2)166

167

If we set I = i − k, we may rewrite the right-hand side of (3.2) as168

∑

I,k

ckqTI+k+Tk
(q)M

(q)k(q)I (q)M−I−k
=
∑

I,k

ckqTI+k+Tk

[
M − I

k

][
M

I

]
(3.3)169

170

again by (1.5). At this stage, we replace TI+k in (3.3) with TI + Tk + I k to rewrite (3.3) as171

∑

I,k

ckq2Tk+TI +I k
[

M − I

k

][
M

I

]
=
∑

I,k

ckq2Tk+TI +I k
[

M

k

][
M − k

I

]
, (3.4)172

173

using (1.5) once more. Finally, we write the right-hand side of (3.4) as174

∑

k

ckq2Tk

[
M

k

](∑

I

qTI +I k
[

M − k

I

])
=
∑

k

ckq2Tk

[
M

k

]
(−qk+1)M−k175

= (−q)M

M∑

k=0

ckq2Tk

(q2; q2)k

(q)M

(q)M−k
= (−q)M

M∑

k=0

ckq2Tk

(q2; q2)k
(q M−k+1)k,

(3.5)

176

177

and this proves Theorem 3.1. �	178

Remark 3.2 Ole Warnaar has pointed out (private correspondence, 2025) that Theorem 3.1 is a special case179

of one of Jackson’s 2φ1 transformations, by setting c = 0, a = q−n and replacing z by zqn in Gasper and180

Rahman [25, III.4]. Our emphasis has been to provide direct proofs of this and other identities in this paper.181

Lebesgue’s identity as a limiting case of Theorem 3.1:182

Let M → ∞ in Theorem 3.1. Then, in view of (3.1), the left-hand side of Theorem 3.1 is183

∞∑

i=0

qTi (−cq)i

(q)i
, (3.6)184

185

which is the left-hand side of (1.1). On the other hand, when M → ∞, the right-hand side of Theorem 3.1186

becomes187

(−q)∞
∞∑

k=0

ckq2Tk

(q2; q2)k
= (−q)∞(−cq2; q2)∞, (3.7)188

189

because (q M−k+1)k → 1 as M → ∞. This yields Lebesgue’s identity.190

Another finite version of Lebesgue’s identity:191

There are several possible finite versions of Lebesgue’s identity, such as192

m+n∑

N=0

q(N 2+N )/2
N∑

k=0

bkq(k2+k)/2
[

m

k

][
n

N − k

]
= (−q)n(q)m

m∑

i=0

bi qi2+i (−qn+1)i

(q2; q2)i (q)m−i
(3.8)193

194
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which is due to Alladi (1994, unpublished), but we have emphasized the finite version in Theorem 3.1 because195

this is connected to the unified approach to the Schur and Lebesgue identities that will be given below.196

To realize that (3.8) is a finite version of Lebesgue’s identity, let m, n → ∞ in (3.8). Then the right-hand197

side (3.8) becomes198

(−q)∞(q)∞
∞∑

i=0

bi qi2+i

(q2; q2)i (q)∞
= (−q)∞(−bq2; q2)∞, (3.9)199

200

which is the right-hand side of (1.1). Under these limits, the left side of (3.8) becomes201

∞∑

N=0

qTN

N∑

k=0

bkqTk

(q)k(q)N−k
=

∞∑

N=0

qTN

(q)N

N∑

k=0

bkqTk

[
N

k

]
=

∞∑

N=0

qTN (−bq)N

(q)N
, (3.10)202

203

which is the left-hand side of (1.1).204

We now sketch the proof of (3.8) which is non-trivial.205

Proof of (3.8): In Alladi [3], the following was established both hypergeometrically and combinatorially:206

Lemma 3.3 (Transformation formula)207

∞∑

n=0

anqn2
(−bq; q2)n

(q2; q2)n
=

∞∑

n=0

(ab)nq2n2
(−aq2n+1; q2)∞

(q2; q2)n
.208

209

To prove the Lemma, expand (−bq; q2)n on the left-hand side using (1.6) and reverse the order of summa-210

tion to get the right-hand side. The combinatorial proof of Lemma 3.3 uses a redistribution idea of Bressoud211

(see [20, 21]).212

The finite version of Lemma 3.3 is213

Lemma 3.4
m+n∑

N=0

aN q N 2
n∑

k=0

bkqk2
[

m

k

]

q2

[
n

N − k

]

q2
=

m∑

i=0

(ab)i q2i2
[

m

i

]

q2
(−aq2i+1; q2)n .214

215

To prove Lemma 3.4, expand (−aq2i+1; q2)n to rewrite the right-hand side as216

m∑

i=0

(ab)i q2i2
[

m

i

]

q2

n∑

j=0

a j q j2+2i j
[

n

j

]

q2
. (3.11)217

218

If we rearrange the right-hand side of (3.11) by putting i + j = N , we get the left-hand side of Lemma 3.4,219

thereby proving it.220

Next in Lemma 3.4, replace a by aq and b by bq to get221

m+n∑

N=0

aN q N 2+N
N∑

k=0

bkqk2+k
[

m

k

]

q2

[
N

N − k

]

q2
=

m∑

i=0

(ab)i q2i2+2i
[

m

i

]

q2
(−aq2i+2; q2)n . (3.12)222

223

In (3.12) replace q2 with q to get224

m+n∑

N=0

aN qTN

n∑

k=0

bkqTk

[
m

k

][
n

N − k

]
=

m∑

i=0

(ab)i qi2+i
[

m

i

]
(−aqi+1)n . (3.13)225

226

If we set a = 1 in (3.13), the right-hand side becomes227

(q)m

m∑

i=0

bi qi2+i (−qi+1)n

(q)i (q)m−i
= (−q)n(q)m

m∑

i=0

bi qi2+i (−qn+1)i

(q2; q2)i (q)m−i
, (3.14)228

229

and so (3.13) and (3.14) yield (3.8).230

123



R
ev

is
ed

Pr
oo

f

“40065_2025_578_ArticleOA” — 2025/10/31 — 7:29 — page 7 — #7

Arab. J. Math.

4 A power series identity unifying Schur and Lebesgue231

Here we prove the following power series identity due to Alamoudi, from which (1.1) and (1.3) emerge as232

special cases:233

Theorem 4.1 With free parameters a, b, c, we have234

∞∑

i=0

ai qTi

(q)i

(
− c

a
q
)

i
(−bqi+1)∞ =

∑

t, j,�

at b�c j qTt+�+ j +Tj

(q)t (q)�(q) j
.235

236

Proof We expand (− c
a q)i and (−bqi+1)∞ to get237

∞∑

i=0

ai qTi

(q)i

(
− c

a
q
)

i
(−bqi+1)∞ =

∞∑

i=0

ai qTi

(q)i

⎛

⎝
i∑

j=0

( c

a

) j
qTj

[
i

j

]⎞

⎠
( ∞∑

�=0

b�qT�+i�

(q)�

)
238

=
∞∑

i=0

ai qTi

⎛

⎝
i∑

j=0

( c
a ) j qTj

(q) j (q)i− j

⎞

⎠
( ∞∑

�=0

b�qT�+i�

(q)�

)
. (4.1)239

240

Now, for the sum on the right in (4.1), put t = i − j and simplify to get241

∑

t, j,�

at b�c j qTt+ j +Tj +T�+(t+ j)�

(q)t (q) j (q)�
=
∑

t, j,�

at b�c j qTt+ j+�+Tj

(q)t (q) j (q)�
,242

243

which proves Theorem 4.1.244

We record two corollaries to Theorem 4.1: �	245

Corollary 4.2 The key-identity (1.3) for the generalized Schur’s theorem holds.246

Proof In Theorem 4.1, take c = ab. Then, the left-hand side of Theorem 4.1 is247

(−bq)∞
∞∑

i=0

ai qTi

(q)i
= (−aq)∞(−bq)∞. (4.2)248

249

The right-hand side of Theorem 4.1 is250

∑

t, j,�

at+ j b�+ j qTt+ j+�+Tj

(q)t (q) j (q)�
. (4.3)251

252

Now, (1.3) follows from (4.2) and (4.3) with the replacements253

t �→ α, � �→ β, and j �→ γ.254
255

Hence Corollary 4.2. �	256

Corollary 4.3 The Lebesgue identity (1.1) holds.257

Proof Take b = 0, a = 1 in Theorem 4.1. Then, the left-hand side of Theorem 4.1 is the left-hand side of258

(1.1). Since b = 0, the only contribution to the right-hand side of Theorem 4.1 is from � = 0, interpreting259

b0 = 1 always. So the right-hand side replacing t �→ i is260

∑

i. j

c j qTi+ j +Tj

(q)i (q) j
=
∑

i, j

c j qTi +2Tj +i j

(q)i (q) j
261

=
∞∑

j=0

c j q2Tj

(q) j

( ∞∑

i=0

qTi +i j

(q) j

)
=

∞∑

j=0

c j q2Tj

(q) j
(−q j+1)∞262

= (−q)∞
∞∑

j=0

c j q2Tj

(q2; q2) j
= (−q)∞(−cq2; q2)∞,263

264

and this yields (1.1). Hence Corollary 4.3. �	265
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Remark 4.4 Since the Schur key-identity and the Lebesgue identity fall out as corollaries (but as two different266

special cases), Theorem 4.1 provides the unification stressed at the beginning of the paper. This unification267

is facilitated by the introduction of a third free parameter c in Theorem 4.1. In [9] where the key-identity is268

proved, the symbol c is used to denote parts of secondary color, but c was always taken to be ab to get the269

product on the right in (1.3). The motivation to introduce the third parameter c in Theorem 4.1 is from the270

short proof of the key identity; the split product271

(−bq)i (−bqi+1)∞272
273

in the short proof is replaced in Theorem 4.1 by the more general split product274

(
− c

a
q
)

i
(−bqi+1)∞.275

276

The above coincide when c = ab. Now, again, consider the bijection in [9]. The sub-partition λb of πb277

containing the parts ≤ ν(πa) in size is used to construct a new partition πa,c = πa +(λb)
∗ with ν(πa,c) = ν(πa)278

but now ν(λb) of the parts have become c parts.2 This motivates the c
a factor.279

Remark 4.5 Ramamani and Venkatachaliengar [29] generalized Lebesgue’s identity (1.1) as follows:280

∞∑

i=0

t i qTi (z)i

(q)i
= (z)∞(−tq)∞

∞∑

j=0

z j

(q) j (−tq) j
. (4.4)281

282

Identity (4.4) can be proved q-hypergeometrically or combinatorially using vector partitions. Now (1.1) can283

be deduced from (4.4) as follows: Take t = 1 and z = −cq . Then the left-hand side of (4.4) is the left-hand284

side of (1.1). With these values of z and t , the right-hand side of (4.4) is285

(−cq)∞(−q)∞
∞∑

j=0

(−cq) j

(q2; q2) j
= (−cq)∞(−q)∞

(−cq; q2)∞
= (−q)∞(−cq2; q2)∞,286

287

which is the right-hand side of (1.1). Thus Lebesgue’s identity follows from (4.4), but is different from our288

derivation of (1.1) from Theorem 4.1, because we get (−cq2; q2)∞ directly, whereas from (4.4), (−cq2; q2)∞289

is obtained from the cancellation in290

(−cq)∞
(−cq; q2)∞

.291

292

Remark 4.6 The replacement c �→ cq−1 in (1.1) yields the equivalent identity293

∞∑

i=0

qTi (−c)i

(q)i
=

∞∏

m=1

(1 + qm)(1 + cq2m−1) =
∞∏

m=1

(1 + cq2m−1)

(1 − q2m−1)
. (4.5)294

295

whose combinatorial interpretation yields Sylvester’s famous refinement [31] of Euler’s theorem. Ramamani296

and Venkatachaliengar actually generalize (4.5) by establishing an identity equivalent to (4.4); we have pre-297

ferred the version of their identity as in (4.4) in view of the discussion of Lebesgue’s identity in this paper.298

Remark 4.7 Since the right-hand side in Theorem 4.1 is symmetric under interchanging a and b, it follows299

that300

∞∑

i=0

ai qTi

(q)i

(
− c

a
q
)

i
(−bqi+1)∞ =

∞∑

i=0

bi qTi

(q)i

(
− c

b
q
)

i
(−aqi+1)∞.301

302

2 π∗ denotes the conjugate of π .
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Remark 4.8 We alert the reader that the dilation and translations in (1.4), as well as the translation c → cq−3,303

the right-hand side of Theorem 4.1 is the sum over generating functions of Schur partitions with the powers304

of a counting the parts ≡ 1 (mod 3), the powers of b counting the parts ≡ 2 (mod 3) and the powers of c305

counting the parts divisible by 3. More generally, the function306

G(t, �, j) = qTt+�+ j +Tj

(q)t (q)�(q) j
307

308

counts Type-1 partitions of a prescribed number of parts of each color, specifically, t a-parts, � b-parts, and309

j c-parts (see [10]). Type-1 refers to a general class of colored partitions, whose exact definition is given in310

[10], that amount to Schur partitions under standard transformations. Furthermore, in [10], Alladi–Gordon311

demonstrated that there are six schemes (i.e., Type-2 up to Type-6), all counted by G(t, �, j).312

In the next section, we shall establish a polynomial version of Theorem 4.1.313

5 A general polynomial identity in three parameters314

In this section, we prove a general multi-parameter polynomial identity due to Alamoudi, from which some315

of the key results stated above follow either as limiting cases or as special cases.316

Theorem 5.1 (Finite three-parameter Schur) For any pair of integers L , M, and parameters a, b, c, we have317

∑

i≥0

ai qTi
(
− c

a
q
)

i
(−bqi+1)L−i

[
M

i

]
=

∑

i, j,k≥0

ai b j ckqTi+ j+k+Tk

[
M − i

k

][
M

i

][
L − i − k

j

]
.318

319

Proof Expand
(− c

a q
)

i and (−bqi+1)L−i to rewrite the left side of Theorem 5.1 as320

∑

i≥0

ai qTi
(
− c

a
q
)

i
(−bqi+1)L−i

[
M

i

]
321

=
∑

i≥0

ai qTi

(
i∑

k=0

(
c

a
)qTk

[
i

k

])⎛

⎝
∑

j≥0

b j qTj +i j
[

L − i

j

]⎞

⎠
[

M

i

]
322

=
∑

i, j,k≥0
k≤i

ai−kb j ckqTi+ j +Tk

[
L − i

j

][
i

k

][
M

i

]
323

=
∑

i, j,k≥0
k≤i

ai−kb j ckqTi+ j +Tk

[
L − i

j

][
M − (i − k)

k

][
M

i − k

]
, (5.1)324

325

because326

[
i

k

][
M

i

]
=
[

M − i + k

k

][
M

i − k

]
, (5.2)327

328

Theorem 5.1 follows by replacing i by i + k in (5.1). �	329

Remark 5.2 Another way to write the right-hand side of Theorem 5.1 to make it more appealing combinatorially330

and symmetric is to replace331

M �→ M ′ − j − k, (5.3)332
333

which converts it to334

∑

i, j,k

ai b j ckqTi+ j+k+Tk

[
M ′ − (i + j + k)

k

][
M ′ − ( j + k)

i

][
L − (i + k)

j

]
. (5.4)335

336

We now consider the consequences of Theorem 5.1.337
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Corollary 5.3 Theorem 4.1 holds.338

Proof Let M, L → ∞ in Theorem 5.1 to get Theorem 4.1. �	339

Corollary 5.4 The following finite (polynomial) version of Lebesgue’s identity holds:340

∞∑

i=0

qTi (−cq)i

[
M

i

]
=
∑

i,k

ckqTi +2Tk+ik
[

M − i

k

][
M

i

]
341

342

Proof Take b = 0, a = 1 in Theorem 5.1. Since b = 0, the values j > 0 do not make a contribution. Thus,343

we put j = 0. This yields Corollary 5.4. �	344

Remark 5.5 The left-hand side of Corollary 5.4 is identical to the left-hand side of Theorem 3.1. But the345

right-hand side of Corollary 5.4 is very different from the right-hand side of Theorem 3.1. Thus, Corollary 5.4346

provides a different finite version of Lebesgue’s identity. However, the right-hand side of Corollary 5.4 can be347

transformed into the right-hand side of Theorem 3.1. In fact, the left side of (3.4) is identical to the right-hand348

side of Corollary 5.4.349

Corollary 5.6 Theorem 3.1 follows from Theorem 5.1.350

To realize that Corollary 5.4 is indeed a finite version of Lebesgue’s identity (1.1), let M → ∞ in Corollary351

5.4. Then, the left-hand side of Corollary 5.4 is clearly352

∞∑

i=0

qTi (−cq)i

(q)i
353

354

which is the left-hand side of (1.1). When M → ∞, the right-hand side of Corollary 5.4 becomes355

∑

i,k

ckqTi +2Tk+ik

(q)i (q)k
=

∞∑

k=1

ckq2Tk

(q)k

∞∑

i=0

qTi +ik

(q)i
356

=
∞∑

k=1

ckq2Tk

(q)k
(−qk+1)∞ = (−q)∞

∞∑

k=1

ckq2Tk

(q2; q2)k
= (−q)∞(−cq2; q2)∞,357

358

which is the right-hand side of (1.1).359

Remark 5.7 We point out that the product of the two q-binomial coefficients in Corollary 5.4 can be rewritten360

as361

[
M − i

k

][
M

i

]
=
[

M

i, k, M − i − k

]
= (q)M

(q)i (q)k(q)M−i−k
, (5.5)362

363

a q-multinomial3 coefficient of order 3. In [10], Alladi–Gordon discuss how the generalized Schur partitions364

are related to q-multinomial coefficients of order 3. This link of the Lebesgue identity with q-multinomial365

coefficients of order 3 is yet another Schur–Lebesgue unification. In Alladi–Berkovich [7,Eqn. 1.15], a finite366

version of Lebesgue’s identity is established; that identity has the product of two q-binomial coefficients as in367

(5.5), but the link between Lebesgue’s identity with q-multinomial coefficients of order 3 and Schur’s theorem368

is not considered in [7]. Warnaar [33] has provided a new proof of the Alladi–Berkovich finite version of the369

Lebesgue identity.370

Remark 5.8 In [6], Alladi–Berkovich prove both combinatorially and q-theoretically the following double371

bounded version of the Alladi–Gordon key-identity for Schur’s partition theorem:372

qTi +Tj

[
L

j

][
M − j

i

]
=
∑

k

qTi+ j−k+Tk

[
M − i − j + k

k

][
M − j

i − k

][
L − i

j − k

]
. (5.6)373

374

3 In the case of the q-multinomial coefficient of order 3, such as in (5.5), we display all three indices i, k and M − i −k whereas
for the q-binomial coefficient

[M
i

]
we suppress M − i (this is standard notation; see for example [11]).
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If we multiply both sides of (5.6) by ai b j and sum over i, j , we get a double bounded version of (1.3). Our375

Theorem 5.1 has a third parameter c and is different in shape from (5.6), but with certain special choices and376

substitutions, Theorem 5.1 will yield (5.6). In particular, if we set c = ab in Theorem 5.1 and replace i → i ′377

and j → j ′, then we get378

(−aq)M (−bq)L =
∑

i ′, j ′,k
ai ′b j ′(ab)kqTi ′+ j ′+k+Tk

[
M − i ′

k

][
M

i ′

][
L − i ′ − k

j ′

]
. (5.7)379

380

In (5.7), by setting i = i ′ + k, j = j ′ + k, and comparing the coefficients of ai b j we get381

∑

i ′, j ′,k
i ′+k=i, j ′+k= j

qTi ′+ j ′+k+Tk

[
M − i ′

k

][
M

i ′

][
L − i ′ − k

j ′

]
= qTi +Tj

[
L

j

][
M

i

]
. (5.8)382

383

Setting M → M − j in (5.8) and simplifying the left-hand side yields (5.6). Notice, however, that the double384

bounded version of (1.3) obtained by multiplying both sides of (5.6) by ai b j and summing over i, j is different385

from (5.7).386

Remark 5.9 For M ≥ 0, setting b = 0 in Theorem 5.1 gives387

M∑

i=0

ai qTi (− c

a
q)i

[
M

i

]
=
∑

i,k

ai ckqTi+k+Tk

[
M

i, k, M − i − k

]
.388

389

Letting q → 1 gives390

M∑

i=0

ai (1 + c

a
)i
(

M

i

)
=
∑

i,k

ai ck
(

M

i, k, M − i − k

)
.391

392

The left-hand side is393

M∑

i=0

(a + c)i
(

M

i

)
= (1 + a + c)M .394

395

The above is an instance of the trinomial theorem.396

6 A key identity for the Alladi–Schur Theorem397

Schur’s partition theorem has always been associated with the modulus 3 or the modulus 6, the latter because398

∞∏

m=1

(1 + q3m−2)(1 + q3m−1) =
∞∏

m=1

1

(1 − q6m−5)(1 − q6m−1)
. (6.1)399

400

Sometime during the 90s, the second author noted that401

∞∏

m=1

1

(1 − q6m−5)(1 − q6m−1)
=

∞∏

m=1

(1 + q2m−1 + q4m−2), (6.2)402

403

where the second product in (6.2) is the generating function of A(n), the number partitions of n into odd parts404

repeating no more than twice, and suggested to George Andrews that it would be worthwhile to explore the405

deeper connections between the equality406

S(n) = A(n). (6.3)407
408

Andrews dubbed the equality in (6.3) the Alladi–Schur Theorem and established in [14] the following deep409

refinement:410
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Theorem A (Andrews’ refinement of the Alladi–Schur theorem)411

Let A(n; k) denote the number of partitions of n into odd parts repeating no more than twice and with exactly412

k parts.413

Let s(n; k) denote the number of partitions of n into parts that differ by ≥ 3, and with no consecutive414

multiples of 3, and having exactly k parts, where the even parts are counted twice. Then415

A(n; k) = s(n; k). (6.4)416
417

Remark 6.1 What is surprising is that in Theorem A, partitions of the Schur type are classified according to418

their parity. Thus, the equality (6.2) has provided a fresh direction for the investigation of Schur partitions.419

Andrews’ proof of Theorem A [14] was q-theoretic. In view of the combinatorial elegance of Theorem A, it is420

natural to ask if there is a combinatorial/bijective proof; such a proof was recently found by Alamoudi in [1],421

and it turned out to be quite intricate. Some notions in [1] share a resemblance with, but are different from,422

some of the notions in Kurşungöz’s important paper [28] on Schur’s partition theorem.423

With the combinatorial proof of Theorem A having been found, the following question arises. Can Theorem424

A be cast in the form of a q-hypergeometric key identity? We answer this in the affirmative below.425

In [28], Kurşungöz obtains, by combinatorial arguments, a series generating function for the Schur parti-426

tions, which is different from the series in the Alladi–Gordon key identity; then, by the same combinatorial427

arguments, he obtains a series generating function for Schur partitions by keeping track of the number of even428

and odd parts. His result is:429

Theorem K Let s(n; m1, m0) denote the number of Schur partitions of n having m1 odd parts and m0 even430

parts. Then431

∑

m1,m0,n≥0

s(n; m1, m0)a
m1bm0qn =

∑

n11,n10,n21,n22≥0

q6n2
21−n21+6n2

22+n22+2n2
11−n11+2n2

10

(q2; q2)n11(q
2; q2)n10(q

6; q6)n21(q
6; q6)n22

432

× q12n21n22+6(n21+n22)(n11+n10)+4n11n10an21+n22+n11bn21+n22+n10 .433

(6.5)434
435

In deriving Theorem K, Kurşungöz groups the Schur partitions of n into disjoint pairs, which are parts that436

differ by exactly 3 (with a certain convention when there is a maximal chain of � parts differing by 3 with �437

is odd), and calls the rest singletons. In the above identity, n11 (resp. n10) is the number of odd (resp. even)438

singletons, and n21 (resp. n22) is the number of 1 (mod 3) (resp. 2 (mod 3)) pairs. We now point out that in439

view of Andrews’ refinement of the Alladi-Schur Theorem and Kurşungöz’s series representation (6.5) for the440

generating function of s(n; m1, m0), if we choose441

b = a2, (6.6)442
443

then the series in (6.5) will be equal to the product444

∞∏

m=1

(1 + aq2m−1 + a2q4m−2), (6.7)445

446

and this yields the key identity for Theorem A. That is447

∑

m1,m0,n≥0

s(n; m1, m0)a
m1+2m0qn =

∑

n11,n10,n21,n22≥0

q6n2
21−n21+6n2

22+n22+2n2
11−n11+2n2

10

(q2; q2)n11(q
2; q2)n10(q

6; q6)n21(q
6; q6)n22

448

× q12n21n22+6(n21+n22)(n11+n10)+4n11n10a3n21+3n22+n11+2n10 =
∞∏

m=1

(1 + aq2m−1 + a2q4m−2)449

(6.8)450
451

is the key identity for Theorem A. This seems to have escaped attention. It is desirable to have a q-hypergeometric452

proof of (6.8). Kurşungöz’s method has been used by other authors to obtain new series generating functions for453

various fundamental partition functions. But Theorem K had not been considered in conjunction with Theorem454

A, which is the reason that the key identity (6.8) for Theorem A presented here had escaped attention. In [13],455
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Andrews has expressed the view that the new direction for Schur’s theorem presented by Theorem A is deeper456

and more significant than the classical version of Schur’s theorem. This is confirmed by the complexity of457

the key identity (6.8), for which, at the time of this writing, a q-hypergeometric proof is not known. There is,458

however, another series representation for the generating function of s(n; m1, m2), due to Andrews–Chern–Li459

[15], which is460

∑

n,m1,m2

s(n; m1, m2)a
m1+m2 bm2qn =

∑

n1,n2,n3≥0

(−1)n3an1+n2+2n3bn2+n3

(q2; q2)n1(q
2; q2)n2(q

6; q6)n3

461

× q2n2
1−n1+2n2

2+9n2
3+2n1n2+6n1n3+6n2n3 . (6.9)462

463

When one sets a = b in (6.9), which means that the even parts are counted twice, then one can set the resulting464

expression equal to the product on the right in (6.8). Thus, we have the identity465

∑

n1,n2,n3≥0

(−1)n3an1+2n2+3n3

(q2; q2)n1(q
2; q2)n2(q

6; q6)n3

× q2n2
1−n1+2n2

2+9n2
2+2n1n2+6n1n3+6n2n3

466

=
∞∏

m=1

(1 + aq2m−1 + a2q4m−2). (6.10)467

468

Andrews–Chern–Li provide two proofs of (6.10), one q-hypergeometric, and another which is computer-469

aided. But it is to be noted that in (6.9) and (6.10), there is the factor (−1)n3 , and so it is not transparent that470

the coefficients in the power series expansion are non-negative. On the other hand, it is transparent that the471

coefficients of the series on the left in (6.8) are all non-negative.472

7 The Capparelli theorems and the key-identity473

Through a study of vertex operators in Lie algebras, Capparelli [22] conjectured the following partition theorem:474

Theorem C Let C∗(n) denote the number of partitions of n into parts ≡ ±2,±3 (mod 12).475

Let D(n) denote the number of partitions of n into parts > 1 with minimal difference ≥ 2, where the difference476

is ≥ 4 unless consecutive parts are multiples of 3 or add up to a multiple of 6. Then477

C∗(n) = D(n).478
479

The first proof of Theorem C was due to Andrews [12] by the use of generating functions. Subsequently,480

Alladi–Andrews–Gordon [5] noticed that if C∗(n) is replaced by the equivalent partition function C(n), which481

is the number of partitions of n into distinct parts ≡ 2, 3, 4 or 6 (mod 6), then there is a three-parameter482

refinement, namely:483

Theorem C-R Let C(n; i, j, k) denote the number of partitions of the type enumerated by C(n), with the484

added restriction that there are precisely i parts ≡ 4 (mod 6), j parts ≡ 2 (mod 6), and of those ≡ 0485

(mod 3), exactly k are > 3(i + j).486

Let D(n; i, j, k) denote the number of partitions of the type enumerated by D(n) with the additional487

restriction that there are precisely i parts ≡ 1 (mod 3), j parts ≡ 2 (mod 3), and k parts ≡ 0 (mod 3). Then488

C(n; i, j, k) = D(n; i, j, k).489
490

Alladi–Andrews–Gordon [5] established a generalization of Theorem C-R by the method of weighted words491

(which was initiated in Alladi–Gordon [9] to establish a generalization of Schur’s theorem), and viewed this492

generalized theorem as the combinatorial interpretation of the following key identity:493

∑

i, j

ai b j q2Ti +2Tj (−q)i+ j (−cqi+ j+1)∞
(q2; q2)i (q2; q2) j

494

=
∑

i, j,k

ai b j ckq2Ti +2Tj +Tk+(i+ j)k

(q)i+ j+k

[
i + j + k

k

]

q

[
i + j

i

]

q2
. (7.1)495

496
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The sum on the right in (7.1) could be rewritten as497

∑

i, j,k

ai b j ckq2Ti +2Tj +Tk+(i+ j)k

(q)i+ j+k

(q)i+ j+k

(q)i+ j (q)k

(q2; q2)i+ j

(q2; q2)i (q2; q2) j
498

=
∑

i, j

ai b j q2Ti +2Tj (−q)i+ j

(q2; q2)i (q2; q2) j

∑

k

ckqTk+(i+ j)k

(q)k
499

=
∑

i, j

ai b j q2Ti +2Tj (−q)i+ j (−cqi+ j+1)∞
(q2; q2)i (q2; q2) j

. (7.2)500

501

If we take c = 1, then the term in (7.2) becomes502

(−q)∞
∑

i, j

ai b j q2Ti +2Tj

(q2; q2)i (q2; q2) j
= (−aq2; q2)∞(−bq2; q2)∞(−q)∞. (7.3)503

504

If we make the replacements505

q �→ q3, a �→ q−2, b �→ q−4 (7.4)506
507

in (7.4), we get the generating function of C(n) in Theorem C-R.508

Capparelli [22] had stated another partition conjecture in the form A∗(n) = B(n). The difference between509

the conditions defining B(n) and D(n) is that among the partitions enumerated by B(n), the integer 2 should not510

occur as a part, but 1 is allowed as part. The generating function of A∗(n) is a product that is more complicated511

than the product generating function of C∗(n). However, it turns out that A∗(n) = A(n), where A(n) is the512

number of partitions of n into distinct parts ≡ 1, 3, 5, or 6 (mod 6). So, this second conjecture is equivalent513

to A(n) = B(n). This conjecture can be proved by applying the transformations514

q �→ q3, a �→ q−5, b �→ q−1, (7.5)515
516

and by combinatorially interpreting the resulting q-hypergeometric identity. So what we stress here is that in517

[5], by considering partitions into distinct parts in certain residue classes modulo 6, instead of partitions into518

parts in certain residue classes modulo 12 (parts that could repeat), not only is the second partition theorem519

of Capparelli cast in a more elegant form, but also that such a reformulation is capable of refinement and520

generalization. The idea that reformulating partitions into certain distinct parts is capable of refinements was521

initiated in Alladi–Gordon’s treatment of Schur’s theorem [9] and indeed that was instrumental in developing522

the method of weighted words which is widely applicable.523

It is to be noted that when we set a = 0, the generalized Capparelli product on the right-hand side of (7.3)524

reduces to525

(−bq; q2)∞(−q)∞, (7.6)526
527

which is the product for Lebesgue’s identity. In view of this link between the generalized Capparelli identity528

and Lebesgue’s identity, it is natural to ask whether a finite version of the Capparelli key identity can be529

obtained from the Transformation Formula (Lemma 3.3) in Sect. 3 just as we obtained the finite version of530

Lebesgue’s identity from Lemma 3.3. The answer is YES. Indeed, Alladi (1994, unpublished), obtained the531

following from Lemma 3.3: For positive integers m, n, we have532

m∑

j=0

n∑

i=0

(bc)i a j q2Ti +2Tj

[
m

i

]

q

[
n

j

]

q2
(−cqi+1)�+ j533

=
m+n+�∑

N=0

cN qTN

⎛

⎝
n∑

j=0

m∑

i=0

bi a j qTi +2Tj

[
m

i

]

q

[
n

j

]

q2

[
� + j

N − i

]

q

⎞

⎠ . (7.7)534

535
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If we let m, n, � → ∞ in (7.7), then we get536

∞∑

i=0

∞∑

j=0

(bc)i ia j q2Ti +2Tj (−q)i (−cqi+1)∞
(q2; q2)i (q2; q2) j

= (−aq2; q2)∞
∞∑

N=0

cN qTN (−bq)N

(q)N
. (7.8)537

538

Identities (7.7) and (7.8) are different from the Capparelli key identity (7.1) in the sense that in (7.1) we have539

(−q)i+ j (−cqi+ j+1)∞, whereas in (7.8) we have (−q)i (−cqi+1)∞. However, when c = 1 both versions are540

the same, and the expression on (7.8) becomes the product541

542

(−aq2; q2)∞(−bq2; q2)∞(−q)∞. (7.9)543
544

But there is a general version of (7.1), which specializes into a polynomial identity, with a free parameter c545

where the decomposition involves (−q)i+ j as noted by Alamoudi: For integers M1, M2, L, we have546

∑

j,i≥0

ai b j q2Ti +2Tj

[
M1

i

]

q2

[
M2

j

]

q2
(−q)i+ j (−cqi+ j+1)L−i− j547

=
∑

i, j,k≥0

ai b j ckq2Ti +2Tj +Tk+(i+ j)k (q L−i− j−k+1)k(q2M1−2i+2; q2)i (q M2−2 j+2; q2) j

(q)i+ j+k

[
i + j + k

k

][
i + j

i

]

q2

(7.10)

548

549

In particular, for non-negative integers M1, M2, L , with L ≥ M1 + M2 we have550

M1∑

i=0

M2∑

j=0

ai b j q2Ti +2Tj

[
M1

i

]

q2

[
M2

j

]

q2
(−q)i+ j (−cqi+ j+1)L−i− j551

=
∑

i, j,k≥0
i≤M1, j≤M2, i+ j+k≤L

ai b j ckq2Ti +2Tj +Tk+(i+ j)k
[

L

i + j + k

][
i + j + k

k

][
i + j

i

]

q2
552

× (q2M1−2i+2; q2)i (q M2−2 j+2; q2) j

(q L−i− j+1)i+ j
. (7.11)553

554

After performing various cancellations, the right-hand sides of (7.10) and (7.11) become555

∑

i, j,k≥0

ai b j ckq2Ti +2Tj +Tk+(i+ j)k
[

M1

i

]

q2

[
M2

j

]

q2

[
L − i − j

k

]
(−q)i+ j . (7.12)556

557

If we sum the inner sum over k and use558

∑

k≥0

ckqTk+(i+ j)k
[

L − i − j

k

]
= (−cqi+ j+1)L−i− j , (7.13)559

560

we get the left-hand sides of (7.10) and (7.11). If we let M1, M2, L → ∞, we get the (infinite version)561

Capparelli key identity given by (7.1) and (7.2).562

Remark 7.1 We have given the intermediate identities (7.10) and (7.11) because they maintain the form of563

(7.1), which is the key identity of the original Alladi–Andrews–Gordon three-parameter refinement of the564

Capparelli partition theorem. The combinatorial significance of the form in (7.1) is that it highlights the565

generating function [5, Eq. (5.5)] which counts the relevant minimal partitions.566
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Remark 7.2 Given the generality of (7.10), we can apply the same bound shifting technique used to obtain567

(5.6) from Theorem 5.1 and get other finite analogs of (7.1). Specifically, by setting the coefficients of ai b j
568

equal, we get569

ai b j q2Ti +2Tj

[
M1

i

]

q2

[
M2

j

]

q2
(−q)i+ j (−cqi+ j+1)L−i− j570

=
∑

k≥0

ai b j ckq2Ti +2Tj +Tk+(i+ j)k (q L−i− j−k+1)k(q2M1−2i+2; q2)i (q M2−2 j+2; q2) j

(q)i+ j+k

[
i + j + k

k

][
i + j

i

]

q2
.

(7.14)

571

572

The above equation is valid for any choice of integers M1, M2, L , i, j with i, j ≥ 0. Setting M1 = L − j ,573

M2 = L , canceling using (qa− j−i+1)i+ j = (qa− j−i+1)i (qa− j+1) j for any a ∈ Z, and summing for all574

i, j ≥ 0 gives, for any L ∈ Z,575

∑

i, j≥0

ai b j q2Ti +2Tj

[
L − j

i

]

q2

[
L

j

]

q2
(−q)i+ j (−cqi+ j+1)L−i− j576

=
∑

i, j,k≥0

ai b j ckq2Ti +2Tj +Tk+(i+ j)k
[

L

i + j + k

][
i + j + k

k

][
i + j

i

]

q2
(−q L−i− j+1)i+ j . (7.15)577

578

The point is in (7.14), the integers M1, M2, i, j, and L are fixed and only k is being summed over. Thus, many579

substitutions can be made, perhaps sending M1 to something that depends on j , and the expression remains580

valid, after which one can sum over i, j ≥ 0. This way, one may obtain a myriad of other finite analogs of581

(7.1). However, the same liberty does not necessarily extend to shifting by expressions involving k since k is582

still bound by the summation in (7.14) and is not free as i ≥ 0 and j ≥ 0 are in (7.14).583

In closing this section, we note that when we set a = 0 in (7.9), the Capparelli product generating function584

reduces to the product generating function for Lebesgue’s identity, and if we further set b = 0, we get the585

product generating function for Euler’s theorem on partitions into distinct parts. This leads us to an infinite586

hierarchy of identities observed by Alladi [3, unpublished], of which the first three cases are those of Euler,587

Lebesgue, and Capparelli, in that order. We present this in the next section, along with a new polynomial588

version of this infinite hierarchy due to Alamoudi.589

8 An infinite hierarchy of q-hypergeometric identities590

In 1994, Alladi observed that for each non-negative integer r , there is the identity591

∑

ν1,ν2,...,νr ,k≥0

aν1
1 aν2

2 · · · aνr
r ckq2Tν1+2Tν2 ···+2Tνr +Tk+k(ν1+ν2+···νk )(−q)ν1+ν2+···νk

(q2; q2)ν1(q
2; q2)ν2 · · · (q2; q2)νr (q)k

592

=
∑

ν1,ν2,...,νr ≥0

aν1
1 aν2

2 · · · aνr
r q2Tν1+2Tν2 ···+2Tνr (−q)ν1+ν2+···νr (−cqν1+ν2+···+νr +1)∞

(q2; q2)ν1(q
2; q2)ν2 · · · (q2; q2)νr

. (8.1)593

594

Identity (8.1) is easily proved by summing over k the inner sum on the left-hand side. When c = 1, identity595

(8.1) becomes596

∑

ν1,ν2,...,νr ,k≥0

aν1
1 aν2

2 · · · aνr
r q2Tν1+2Tν2 ···+2Tνr +Tk+k(ν1+ν2+···νk )(−q)ν1+ν2+···νk

(q2; q2)ν1(q
2; q2)ν2 · · · (q2; q2)νr (q)k

597

= (−a1q2; q2)∞(−a2q2; q2)∞ · · · (ar q2; q2)∞(−q)∞. (8.2)598
599

Note that the case r = 0 in (8.2) is Euler’s identity for partitions into distinct parts, the case r = 1 gives the600

product for Lebesgue’s identity, and the case r = 2 yields the product for the generalized Capparelli identity601

(7.3). This was the motivation to come up with this infinite hierarchy:602

Euler (r = 0) → Lebesgue (r = 1) → Capparelli (r = 2) → · · · . (8.3)603
604
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To get regular partition theorems (not weighted ones) from (8.1) and (8.2), the minimal dilation is605

q �→ qr+1, (8.4)606
607

and this is the optimal dilation. There are several choices of residue classes modulo r +1 = m for this dilation:608

Let j1, j3, . . . , jr be incongruent modulo m, with 0 < ji < 2m, ji 
= m. Consider the translations609

ai �→ ai q
ji −m for i = 1, 2, . . . r. (8.5)610

611

We will now turn our attention to the corresponding partition theorem. However, we must first discuss the612

important notion of level parities. We begin by alerting the reader to the following convention we adopt in the613

sequel.614

In the sequel, we adopt the following convention. Whenever we say that a part is ≡ j (mod M), we mean615

a part of the form j + λM , with the integer λ ≥ 0. In particular, the part is ≥ j . For example, if a part is ≡ 4616

(mod 3), that part must be one of 4, 7, 10, . . ..617

For each part p ≡ j (mod M), such that M � j , we say that p has odd level parity as a j (mod M) part618

if p = j + λM with λ odd. Otherwise, we say p has even level parity as a j (mod M) part.619

Remark 8.1 In the sequel, we will simply say that a part p has odd/even level parity and omit the prepositional620

phrase “as a j (mod M) part" as it will be clear from context. Nonetheless, we would like to alert the reader621

to the following subtlety. In general, the level parity of a part p depends on the specific choice of j and M . For622

example, 7 has odd level parity if j = 2 and M = 5, but even level parity if j = 1 and M = 3. Moreover, in623

view of the above convention, even if j ≡ j ′ (mod M) in the traditional sense, j and j ′ can define different624

level parities for p. For example, 7 has odd level parity if j = 4 and M = 3 but even level parity if j = 1 and625

M = 3, even though 4 ≡ 1 (mod 3).626

Theorem H Let A(n; ν1, ν2, . . . , νr ; 2m) denote the number of partitions of n into νi distinct parts ≡ ji627

(mod 2m) and distinct parts ≡ 0 (mod m), for i = 1, 2, . . . , r .628

Let B(n; ν1, ν2, . . . , νr ; m) denote the number of partitions of n into νi distinct parts ≡ ji (mod m) for629

i = 1, 2, . . . , r such that the difference between two parts of different level parities is > m, and distinct parts630

≡ 0 (mod m) each > ( j1 + j2 + · · · + jr )m.631

Then, we have632

A(n; ν1, ν2, . . . , νr ; 2m) = B(n; ν1, ν2, . . . , νr ; m). (8.6)633
634

Remark 8.2 In the combinatorial proofs of Schur’s theorem in Alladi–Gordon [9], and of Capparelli’s theorem635

in Alladi–Andrews–Gordon [5], a combinatorial method due to Bressoud is followed. This method involves636

two stages: Stage 1 is an embedding (of the Ferrers conjugate of the distinct parts ≡ 0 (mod m) which are637

≤ (ν1 + ν2 + · · · + νr )m into the Ferrers graph of the partitions parts into distinct parts ≡ ji (mod 2m)638

for i = 1, 2, · · · , r . This is followed by Stage 2, which is a rearrangement, which we call the Bressoud639

rearrangement, and this is more complicated. It is only after the rearrangement that we get a partition satisfying640

certain difference conditions. The partition function A in (8.6) is at the product level, and this is the start of641

the combinatorial construction. The partition function B is at the embedding stage of the combinatorial proof.642

What we require is the partition function C (whose parts satisfy difference conditions based on the residue643

classes), which results AFTER the Bressoud rearrangement is completed. We expect to present the function C644

after working out the details in a subsequent paper [2] devoted to the combinatorics of various identities that645

have been presented here. However, we will present C in a certain special case (see Theorem C5).646

Remark 8.3 We note the following with regards to Theorem H.647

(i) It is to be noted that for the partition function A in Theorem H, the modulus is 2m, whereas for the648

partition function B, the modulus is m. This halving of the modulus for B is due to the embedding.649

(ii) Due to observed combinatorial insights and intricacies, the authors have refined the statement of Theorem650

H, as well as Theorem C5 presented later in this section, in this version of the manuscript. This includes651

the introduction of the notion of level parities. Regarding this notion, it is important to note that although652

the difference between two parts of different level parities is > m, in view of the definition of level parity,653

consecutive multiples of m are allowed for Theorem H.654
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In the case r = 1, the dilation gives the Little Göllnitz theorems, not the Lebesgue identity which corre-655

sponds to the undilated case.656

For r = 1, the function C is as in Corollary 2A of Alladi–Gordon [8]. There, the function B is not mentioned.657

It would be B(n; j, 2) = the number of partitions into j distinct and non-consecutive odd parts, and even658

parts, each > 2 j .659

In the case r = 2, which corresponds to Capparelli’s theorem, C and A are known, but B is not mentioned.660

It will be B(n; ν1, ν2; 3) = the number of partitions of n into distinct ν1 parts ≡ 4 (mod 3) and distinct ν2661

parts ≡ 2 (mod 3) such that the gap between parts of different parities is > 3, and distinct parts ≡ 0 (mod 3)662

each > 3(ν1 + ν2).663

Actually, there are two theorems of Capparelli (which correspond to the case r = 2). For the first theorem,664

the function A has generating function665

(−a1q2; q6)∞(−a2q4; q6)∞(−q3; q3)∞. (8.7)666
667

The second theorem of Capparelli corresponds to the generating function of A(n) being668

(−a1q; q6)∞(−a2q5; q6)∞(−q3; q3)∞. (8.8)669
670

When we set a1 = a2 = 1, the product in (8.7) becomes671

1

(q3; q6)∞(q2; q12)∞(q10; q12)∞
= 1

(q3; q12)∞(q9; q12)∞(q2; q12)∞(q10; q12)∞
. (8.9)672

673

It is in the unrefined form as in (8.9) that Capparelli stated his conjecture. It was in Alladi–Andrews–Gordon674

[5] that the product in (8.9) was replaced by (8.7), which had the advantage that the theorem could be refined675

by introducing parameters a1, a2. When we set a1 = a2 = 1 in (8.8), it does not yield a product as nice as in676

(8.9), but more complicated, and it is such a product that Capparelli stated. Again, the advantage of considering677

distinct parts, as pointed out in [5], is that Capparelli’s second theorem can be more neatly expressed in terms of678

the product (8.8). So the question that arises is whether, for r ≥ 3, there are such special choices of the residue679

classes modulo 2m = 2(r + 1), where the product in terms of distinct parts determined modulo m transforms680

neatly into a product where the modulus is 2m, and the parts can repeat as in (8.9). Such a phenomenon does681

not occur when r = 3, but does occur for all even r ≥ 4. We illustrate this with an example of r = 4 (so682

m = r + 1 = 5). Thus, as per Theorem L, we need to choose four residue classes mod 10, which are683

incongruent mod 5 and unequal to 0 or 5 (mod 10). The ideal choice is 2, 4, 6, 8 (mod 10). This then gives684

(−q2; q10)∞(−q4; q10)∞(−q6; q10)∞(−q8; q10)∞(−q5; q5)∞685

= 1

(q5; q10)∞(q2; q20)∞(q6; q20)∞(q14; q20)∞(q18; q20)∞
, (8.10)686

687

which is an ideal extension of Capparelli’s first theorem to the level r = 4. Thus, the combinatorics underlying688

this infinite hierarchy is fascinating, and we hope to discuss this in a subsequent paper [2]. But for this paper,689

we will only state the Capparelli theorem in the higher case r = 4 (m = r + 1 = 5), which we can prove690

combinatorially by the method given in Alladi–Andrews–Gordon [5].691

Theorem C5 Let A(n) denote the number of partitions of n into distinct parts ≡ 0, 2, 4, 5, 6, or 8 (mod 10).692

Let C(n) denote the number of partitions of n into parts ≡ 2, 5, 6, 14, 15, or 18 (mod 20).693

Let D(n) denote the number of partitions λ = λ1 + · · · λ�, written in non-increasing order, with distinct694

parts not equal to 1 or 3, such that:695

(i) The gap is ≥ 5 if two consecutive parts have different parities or one of them is a multiple of 5, with gap696

5, only allowed for consecutive multiples of 5.697

698

(ii) Whenever 5|λi , we have λi − λi+ j ≥ 5 j for 1 ≤ i ≤ i + j ≤ �.699

Then,700

A(n) = C(n) = D(n).701
702
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Remark 8.4 In [2], we will consider a general form of the second condition for D(n). Namely, for modulus m703

we consider partitions with the property that whenever m|λi , we have λi − λi+ j ≥ mj for 1 ≤ i ≤ i + j ≤ �.704

We will also consider a dual variant of this notion. These considerations will be in the context of higher analogs705

of D(n) featured in Theorem C5. Conversely, for lower m, namely for Capparalli (i.e. m = 3), we note that706

condition (ii) is redundant.707

The combinatorial proof actually gives a four-parameter refinement of the equality A(n) = D(n) in which708

we can keep track of the parts ≡ 1, 2, 3, 4 (mod 5). Note that for the partition function A(n) in Theorem709

C5, the parts ≡ 1, 2, 3, 4 (mod 5) are actually in the form 6, 2, 8, 4 (mod 10). All this will be presented in a710

subsequent paper along with the combinatorics of the infinite hierarchy.711

For this manuscript, however, we will conclude with a discussion of the polynomial infinite hierarchy. In712

particular, Alamoudi has recently noticed that the following polynomial (finite) identities correspond to (8.1)713

and (8.2). For simplicity of the expressions, put N = ν1 +ν2 +· · ·+νr . Then, for integers M1, M2, . . . , Mr , L ,714

we have715

∑

ν1,...,νr ,k≥0

aν1
1 q

Tν1
1 aν2

2 q
Tν2
2 · · · aνr

r q
Tνr
r qTk+k N

[
M1

ν1

]

q1

[
M2

ν2

]

q2

· · ·
[

Mr

νr

]

qr

[
L − N

k

]
(−q)N716

= (−a1q1; q1)M1(−a2q2; q2)M2 · · · (−ar qr ; qr )Mr (−q)L . (8.11)717
718

Notice that when M1, M2, . . . , Mr , L are non-negative, with L ≥ M1 + M2 + · · · + Mr , the sum on the left719

is equivalent to the conditions that720

721

0 ≤ νi ≤ Mi for i = 1, 2, . . . , r, and N + k ≤ L . (8.12)722
723

To prove (8.11), sum the inner sum over k and use724

∑

k≥0

ckqTk+Nk
[

L − N

k

]
= (−cq N+1)L−N , (8.13)725

726

and727

(−ai qi ; qi )Mi =
∑

νi ≥0

ai q
Tνi
i

[
Mi

ν

]

qi

for i = 1, 2, · · · , r. (8.14)728

729

When q1 = · · · = qr = q2, we obtain730

∑

ν1,...,νr ≥0

aν1
1 aν2

2 · · · aνr
r ckq2(Tν1+Tν2 +···+Tνr )+Tk+Nk

[
M1

ν1

]

q2

[
M2

ν2

]

q2
· · ·
[

Mr

νr

]

q2

[
L − N

k

]
(−q)N731

= (−a1q2; q2)M1(−a2q2; q2)M2 · · · (−ar q2; q2)Mr (−q)L . (8.15)732
733

Moreover, when Mi for i = 1, 2, . . . , r and L all → ∞, (8.11) reduces to (8.2). On the other hand, for a734

polynomial analog of (8.1) maintaining the form of (7.1), we first write the LHS of (8.1) in the form of (7.1)735

to get736

∑

ν1,ν2,...,νr ,k≥0

aν1
1 aν2

2 · · · aνr
r ckq2Tν1+2Tν2 ···+2Tνr +Tk+k(ν1+ν2+···νr )

(q)ν1+ν2+···νr +k

[
ν1 + · · · + νr

ν1, . . . , νr

]

q2
737

×
[
ν1 + · · · + νr + k

ν1 + · · · + νr , k

]

q
738

=
∑

ν1,ν2,...,νr ≥0

aν1
1 aν2

2 · · · aνr
r q2Tν1+2Tν2 ···+2Tνr (−q)ν1+ν2+···νr (−cqν1+ν2+···+νr +1)∞

(q2; q2)ν1(q
2; q2)ν2 · · · (q2; q2)νr

. (8.1b)739

740
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As before, for simplicity of the expressions, put N = ν1 + ν2 + · · · + νr . Then741

∑

ν1,ν2,...,νr ,k≥0

aν1
1 aν2

2 · · · aνr
r ckq2(Tν1+Tν2 +···+Tνr )+Tk+k(ν1+ν2+···νr )

(q L−N−k+1)k

(q)N+k

[
N

ν1, . . . , νr

]

q2
742

×
[

N + k

N , k

]

q

r∏

i=1

(q2Mi −2νi +2; q2)νi743

=
∑

ν1,ν2,...,νr ≥0

aν1
1 aν2

2 · · · aνr
r q2(Tν1+Tν2 +···+Tνr )

[
M1

ν1

]

q2

[
M2

ν2

]

q2
· · ·
[

Mr

νr

]

q2
(−q)N (−cq N+1)L−N .744

(8.16)745746

In particular, for non-negative integers M1, . . . , Mr , L , with L ≥ M1 + · · · + Mr we have747

∑

ν1,ν2,...,νr ,k≥0
ν1≤M1,...,νr ≤Mr ,N+k≤L

aν1
1 aν2

2 · · · aνr
r ckq2(

∑r
i=1 Tνi )+Tk+k(ν1+ν2+···νr )

[
L

N + k

]

q

[
N

ν1, . . . , νr

]

q2
748

×
[

N + k

N , k

]

q

∏r
i=1(q

2Mi −2νi +2; q2)νi

(q L−N+1)N
749

=
M1∑

ν1=0

M2∑

ν2=0

· · ·
Mr∑

νr =0

aν1
1 aν2

2 · · · aνr
r q2(

∑r
i=1 Tνi )

[
M1

ν1

]

q2

[
M2

ν2

]

q2
· · ·
[

Mr

νr

]

q2
(−q)N (−cq N+1)L−N .750

(8.17)751
752

In the same way as before, when Mi for i = 1, 2, . . . , r , and L all → ∞, (8.16) and (8.17) give (8.1b). We753

note that just like (7.10), the LHS of (8.16) could be written in the form of the LHS of (8.11) or (8.15), then the754

identity is evident. However, we emphasize this form because it maintains its resemblance to the original (7.1).755

Furthermore, the form4 of (8.11) does not exploit the pivotal role the substitution q1 = · · · = qr = q2 plays in756

giving this form. For example, for the substitution q1 = · · · = qr = q3 it is not true that the form is preserved.757

In particular, for any function ε(q, M1, . . . , Mr , L) such that ε(q, M1, . . . , Mr , L) → 1 as M1, . . . , Mr , L all758

→ ∞ we have759

∑

ν1,ν2,...,νr ,k≥0

aν1
1 aν2

2 · · · aνr
r ckq3(Tν1+Tν2 +···+Tνr )+Tk+k(ν1+ν2+···νr )

[
L

N + k

]

q

[
N

ν1, . . . , νr

]

q3
760

×
[

N + k

N , k

]

q
ε(q, M1, . . . , Mr , L)761


=
∑

ν1,ν2,...,νr ≥0

aν1
1 aν2

2 · · · aνr
r q3(Tν1+Tν2 +···+Tνr )

[
M1

ν1

]

q3

[
M2

ν2

]

q3
· · ·
[

Mr

νr

]

q3
(−q)N (−cq N+1)L−N .762

763

This is because, if we take a2 = · · · = ar = c = 0 and let M1 → ∞, the coefficient of a1 in LHS is q3

1−q and764

the coefficient of a1 in RHS is q3(1+q)

1−q3 . This is to say, if we set q1 = · · · = qr = qm′
, only the case m′ = 2765

gives the form of (7.1).766

Remark 8.5 Like (7.10), using the bound shifting method on (8.17) gives, for any L ∈ Z,767

∑

ν1,...,νr ,k≥0

aν1
1 · · · aνr

r ckq2(
∑r

i=1 Tνi )+Tk+k N
[

L

N + k

]

q

[
N

ν1, . . . , νr

]

q2

[
N + k

N , k

]

q
(−q L−N+1)N768

=
∑

ν1,ν2,...,νr ≥0

aν1
1 aν2

2 · · · aνr
r q2(

∑r
i=1 Tνi )

r∏

i=1

[
L −∑

i< j≤r ν j

νi

]

q2
(−q)N (−cq N+1)L−N . (8.18)769

770

4 See Remark 8.6.
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Remark 8.6 In [2] we will consider [5,Eq. (5.5)] as an instance of the more general equation below.771

H(ν1, . . . , νr , k) = q2Tν1+···+2Tνr +Tk+k(ν1+ν2+···νr )

[
ν1 + · · · + νr

ν1, . . . , νr

]

q2
×
[
ν1 + · · · + νr + k

ν1 + · · · + νr , k

]

q
772

We will interpret the above function combinatorially in a manner that has similarities and differences to the773

interpretation in [5]. This interpretation highlights the combintorial significance of the forms (7.1) and (8.1b).774

Work of Berkovich–Uncu: Berkovich and Uncu [16–19], provided three separate finite polynomial identities775

that imply Capparelli’s identities as limiting cases. The original polynomial identities were found by imposing776

bounds on the combinatorial constructions that Kurşungöz [27] introduced. Their proofs used an automated777

deduction method and recurrences. The proven polynomial identities also led to the discovery of infinite778

hierarchies of sum-product identities that include Capparelli’s identities [16, 18]. Similarly, Uncu [32], by779

refining Kurşungöz’s construction, proved a polynomial identity that implies Schur’s partition theorem. The780

results and methods in this paper are different from these related works.781

Concluding thought: Two things have been accomplished in this paper: (i) a unification of Schur’s theorem and782

Lebesgue identity, and (ii) an infinite hierarchy of q-hypergeometric identities of which the initial ones are the783

identities for the partition theorems of Lebesgue and Capparelli. The unification of the Schur and Lebesgue784

partition theorems was motivated by the fact that the basic idea behind both of their combinatorial proofs was785

the same—namely, a method of Bressoud suitably adapted to each of the two. Since the combinatorial proof786

of Capparelli’s theorem in [5] also uses the technique of Bressoud, it is our desire to unify the theorems of787

Schur, Lebesgue, and Capparelli by a common scheme.788
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27. Kurşungöz, K.: Andrews–Gordon type series for Capparelli’s and Göllnitz–Gordon identities. J. Comb. Theory Ser. A842

165(XS), 117–138 (2019)843
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