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Abstract Here, we establish a polynomial identity in three variables a, b, ¢, and with the degree of the
polynomial given in terms of two integers L, M. By letting L and M tend to infinity, we get the 1993 Alladi—
Gordon g-hypergeometric key-identity for the generalized Schur Theorem as well as the fundamental Lebesgue
identity by two different choices of the variables. This polynomial identity provides a generalization and a
unified approach to the Schur and Lebesgue theorems. We discuss other analytic identities for the Lebesgue
and Schur theorems and also provide a key identity (¢g-hypergeometric) for Andrews’ deep refinement of the
Alladi-Schur theorem. Finally, we discuss a new infinite hierarchy of identities, the first three of which relate
to the partition theorems of Euler, Lebesgue, and Capparelli, and provide their polynomial versions as well.

Mathematics Subject Classification 05A15 - 05A17 - 11P81 - 11P83

1 Introduction

One of the fundamental g-hypergeometric identities is Lebesgue’s identity:

o T o] 0 2m

q'i(—cq)i m om (I +cqg=™)

y AL '« CLA 1 1 = -1 7 1.1
l§:0 7| ﬂ( + g™+ cg®™) Lll (=S (1.0

The importance of (1.1) is due to the fact that when ¢ = 0 it yields Euler’s series and product generating
functions for partitions into distinct parts, and with the dilations and translations given by

dilationg +— qz, translations ¢ cq_l orc — cq, (1.2)

it yields the g-hypergeometric identities for the Little Gollnitz partition theorems (see Theorem G below).
In [8], Alladi—Gordon gave the following combinatorial interpretation of Lebesgue’s identity as a weighted
partition theorem along with a combinatorial proof:

Theorem L. Let D(n; j) denote the number of partitions of w : by + by + - - - + b, = n into distinct parts b;,
such that there are j gaps b; — bi11 > 2 among the parts fori = 1,2, ... v, with the convention b,11 = 0.
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Let C(n; k) denote the number of partitions of n with even parts non-repeating, such that there are precisely
k even parts. Then

Y D, +e) =) Cln k)t
j k

Under the transformations in (1.2), the two Gollnitz identities that emerge are:

X gt (—ea gD
— =[]0 +a*") A+ +cg™ ), (1.2a)
i=0 ((] 4 )i m=1
and
o0 i +l ¢ o0
Zq (q( 5 D T+ + g™ 2+ e, (1.20)
i= ! m=1

The Little Gollnitz theorem(s) [26], which are the partition interpretations of (1.2a) and (1.2b), are:

Theorem G Fori = 1,2, let g;(n; k) denote the number of partitions of n into parts that differ by > 2, with
strict inequality if a part is odd, having k odd parts, where the smallest part is > i.

Fori = 1,2, let Gi(n; k) denote the number of partitions into distinct parts, which are of the form
2,4, or2i — 1 (mod 4), and with k parts = 2i — 1 (mod 4). Then

giln; k) =Gi(n; k), for i =1,2.

Remark 1.1 Tt is only at the undilated level, that is, for Lebesgue’s identity, the partition theorem (Theorem
L) is a weighted partition theorem. Once we have the dilation as in (1.2), Theorem G is a regular partition
theorem (not weighted).

The celebrated 1926 partition theorem of Schur is:

Theorem S Let B(n) denote the number of partitions of n into distinct parts = =1 (mod 3).
Let S(n) denote the number of partitions of n into parts that differ by at least 3, with strict inequality if a
part is a multiple of 3. Then

S(n) = B(n).

Remark 1.2 Note one similarity in the difference conditions in Theorems G and S, namely, in Theorem G, the
gap between parts is > 2 with strict inequality if a part is odd, while in Theorem S, the gap between parts is
> 3 with strict inequality if a part is a multiple of 3. For the remainder of this manuscript, we will refer to the
partitions enumerated by S(n) as Schur partitions.

Gleissburg [24] showed that Theorem S can be refined to

B(n; k) = S(n; k),

where B(n; k) and S(n; k) denote the number of partitions enumerated by B(n) and S(n) with the condition
that the number of parts is k, and with the convention that parts which are multiples of 3 are counted twice by
S(n; k).

In 1993, Alladi and Gordon [9] proved a two-parameter refinement and generalization of Theorem S, and
in doing so, for the first time, cast Theorem S in the form of a g-hypergeometric identity, which they dubbed
a key-identity:

a?ty pBty o s+ Ty alblgTitTi s ) .
> S T =TTa +agH +bg). (1.3)
wpy @Dal@p@)y o @il@;
wheres = o + 8+ v.
By using the transformations
(dilation) g +— q3 , and (translations)a +— aq_z, b bq_1 (1.4)

in (1.3), the following strong refinement of Theorem S falls out:
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Theorem A-G Let B(n; i, j) denote the number of partitions of n into i distinct parts = 1 (mod 3), and j
distinct parts = 2 (mod 3).

Let S(n; a, B, y) denote the number of partitions of the type enumerated by S(n), with the condition that
the number of parts = 1,2,3 (mod 3) is «, B, y respectively. Then

Y. S By) =B, )).

aty=i.p+y=j
Notice that in Theorem A-G, the total number of parts is
itj=at+y+p+ty=a+p+2y,

and so the parts that are multiples of 3 are counted twice. In [9], the combinatorial interpretation of the key-
identity was given in terms of partitions into parts occurring in three possible colors: two primary colors, a
and b, and one secondary color, ab the combination of the other two, with gap conditions on the colored parts,
and with the condition that the parts occurring in the secondary color are counted twice. Under the dilation
and translations given in (1.4), the parts in primary colors a, b correspond to parts = 1,2 (mod 3), and parts
in secondary color are then the multiples of 3.

The colored partition version (generalization) of Theorem A-G is proved combinatorially (bijectively) in
[9]. The combinatorial proofs of the weighted partition Theorem L given in [8], and of the colored partition
version of Theorem A-G in [9] are similar, with the main difference being in the final step, where in the case
of Theorem L, a certain choice could be made; this is why D(n; j) has a weight (1 4 ¢)/ attached to it. Since
the combinatorial proofs of Theorem L and the colored generalization of Theorem A-G are so similar, it is
natural to ask if there is a unified g-hypergeometric approach to Lebesgue’s identity (1.1) and the key-identity
(1.3) for the generalized Schur theorem? After establishing a finite analog of Lebesgue’s identity in Sect. 3,
we provide in Sect. 6 a new polynomial identity, from which, under two different specializations, the finite
Schur and Lebesgue identities fall out. Following this, in Sect. 6, we provide a g-hypergeometric key-identity
for Andrews’ deep refinement of the Alladi—Schur Theorem. Finally, in Sect. 7, we introduce a new infinite
hierarchy of identities of which the first three correspond to the partition theorems of Euler, Lebesgue, and
Capparelli; we provide a polynomial version of this infinite hierarchy as well.

To aid the reader, we will conclude this introductory section by recalling basic facts, along with notational
conventions, that are used throughout the paper.

For complex numbers a, ¢, we use the g-Pochhammer symbols

n—1

(@ = (a; Q) := [ ] (1 — ag’),

j=0
and
o0
(@ @)oo = lim (a: q); = [J(1 —ag?), if g <1.
n—00 0
J=

The variable ¢ is called the base. We often write (a), in place of (a; ¢), suppressing ¢, but when the base is
anything other than g, it will be displayed.
We also make use of the g-binomial coefficients given by

|:n:|:|:n:| = L, for 0<m<n (1.5)
m ml, (@Dm(@Dn—m

which are polynomials in g of degree m(n — m). When n > 0, the g-binomial coefficients have value 0 when
m < 0 or when m > n. This is because 1/(q); = 0 when j < 0.
We shall often use the following identity involving the ¢-binomial coefficients:

(—cq)n =Y kg™ m (1.6)

k>0

where, here and throughout, Tj = k(k+ 1)/2 is the k-th Triangular number. In some instances, the expressions
involving the g-Pochhammer symbol and the g-binomial coefficients presented in this paper remain valid with
n < 0.In such cases, the meaning of [Z] and (—cq), is as [23]. Furthermore, (1.6) remains valid for any integer
n (even n < 0) as can be seen from [23, Thm 4.10].

@ Springer
“40065_2025_578_ArticleOA” — 2025/10/31 — 7:29 — page 3 — #3



124

125
126
127
128

129

130

131

132

133

134

135
136

137

18

140

141
142

143

13

146

147
148
149
150

151

152
153

154

155

156

157
158

159

160

Arab. J. Math.

2 A very short proof of the key identity for Schur’s theorem

The proof of the key identity (1.3) given in [9] utilizes the g-Chu—Vandermonde summation. A second proof
of (1.3) was given in [9] by rewriting it suitably and then using a Durfee rectangles argument. In October 2022,
the second author communicated [4] to George Andrews a very short proof of the key identity (1.3), which
we give here because this proof and the underlying combinatorics motivate the construction of the polynomial
identity that provides the unification:

Proof Begin by expanding (—ag)~ and by splitting (—bg) as follows:

o i T
(—aq)oo(—bq)oo = Y a(;).

i=0

(=bq)i (=bg" Mo @2.1)

Next, expand (—bg); and (—bqi+1)oo, and substitute these expansions in (2.1) to get

© i T i ; X ploTetit
(—aq)oo(—bq)oo = Y a(q) D bigh [l] (Z q—)
iz i j=0 )

J — (@

_ iaiqTi i quTj <i quTz-HE) . 22)
ya

i—o = @i @i — (@)

At this stage, consider the following replacements in (2.2)
j—y, i—j=i—yr—a and {— B, (2.3)
to rewrite the expression on the right in (2.2) as
a®tr pPty g Tty

> : (2.4)

wpy Da@p@)y

where we have used the identity
Ty + Ty +nm =Ty
for Triangular numbers, and s = o + B + y. The key identity follows from (2.1) and (2.4). O

Remark 2.1 In [9], the first two steps in the combinatorial proof of the generalized Schur theorem were as
follows: Start with a vector partition < m,, 7, > in which m, is a partition into i parts in color a, all distinct,
and 7, 1S a partition into j parts in color b, all distinct. Then separate the parts of 7, into those that are < i
in size and those that are > (i + 1) in size. There are six steps in that combinatorial proof, but these first two
steps correspond to
alqli
(@)i

and this motivated the starting point of the short proof of the key identity.

(=b@)i(—=bg" o,

3 A finite version of Lebesgue’s identity
The g-binomial coefficients [”7’1] have the property that
. n 1
lim |: i| = —. 3.1
n—o0 | m (@)m

So, a natural way to construct polynomial analogs of g-hypergeometric identities is to bring in g-binomial
coefficients in place of terms like 1/(g),,. We now establish a polynomial version of Lebesgue’s identity!:

! An equivalent identity appears in [30] in a different form. However, our approach is different.
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Theorem 3.1 For all positive integers M, we have

M M M ckq?Tk
Zq”(—cq),-[ l. ] = (—q)m (Z —(qM‘”‘)k) .
i=0

2
= @ 4

Proof Begin by expanding (—cgq); and using (1.5) to rewrite the left-hand side of the expression in Theorem

3.1 as

(Dk(@i—k (@ m—i

a M (@)m
Zqﬂ(_cq)i[i} Zq (Z k Tk|: D[ } Z k Ti+T; :
i=0

If we set I =i — k, we may rewrite the right-hand side of (3.2) as

k  Tryi+Tie (@m k o Trpk+Tk M—1\M
2. =2 e L

D@D (@ m—1—k I

again by (1.5). At this stage, we replace 774 in (3.3) with T7 + Ty + Ik to rewrite (3.3) as

ch 2Tk+T1+lk|:M M } Z k 2Tk+T,+1k|:Ak4:| [Ml—k]’

using (1.5) once more. Finally, we write the right-hand side of (3.4) as

Z&m[]@%“ﬂMkD Z&m[} ¢

I
k 2Ty

M kg (@m s~ _ca
= (—Q)M’;mm = (—CI)Mkz:(:) (g% 9

and this proves Theorem 3.1.

k 2Ty

(3.2)

(3.3)

(3.4)

( M—k-H)k

(3.5)

O

Remark 3.2 Ole Warnaar has pointed out (private correspondence, 2025) that Theorem 3.1 is a special case
of one of Jackson’s ,¢; transformations, by setting ¢ = 0,a = ¢~" and replacing z by z¢" in Gasper and
Rahman [25, III1.4]. Our emphasis has been to provide direct proofs of this and other identities in this paper.

Lebesgue’s identity as a limiting case of Theorem 3.1:
Let M — oo in Theorem 3.1. Then, in view of (3.1), the left-hand side of Theorem 3.1 is

(3.6)

(3.7)

— g7 (—cq)i
~ @i
which is the left-hand side of (1.1). On the other hand, when M — oo, the right-hand side of Theorem 3.1
becomes
o0 kg?Tx -
(—=9)oo 1; @ O = (—9)oo(—¢q7; 4" ) 0>

because (g™ ~**+1), — 1 as M — oo. This yields Lebesgue’s identity.
Another finite version of Lebesgue’s identity:
There are several possible finite versions of Lebesgue’s identity, such as

m—+n N m .0
lql +t(_qn+1)i

2 2 m
Z ol +N)/2]§bkq(k +k>/2[k} [N k] (=n(@m Z

N=0
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(3.8)

@ Springer



195
196
197

198

199

200

201

202

203

204

205

206

207

208

209

210
211
212
213

214

215

216

217

218

219
220

221

222

223

224

225

226

227

228

229

230

Arab. J. Math.

which is due to Alladi (1994, unpublished), but we have emphasized the finite version in Theorem 3.1 because
this is connected to the unified approach to the Schur and Lebesgue identities that will be given below.

To realize that (3.8) is a finite version of Lebesgue’s identity, let m, n — oo in (3.8). Then the right-hand
side (3.8) becomes

0 bi qi2+i
(—9)0(q) — 5
= ; (% 49)i(@)oo
which is the right-hand side of (1.1). Under these limits, the left side of (3.8) becomes

ZQTNZ Z_)Z”k (3] qu( o, (310

= W @n—rk = @n

= (=)o (—bq*; P o> (3.9)

bk Tk

which is the left-hand side of (1.1).
We now sketch the proof of (3.8) which is non-trivial.

Proof of (3.8): In Alladi [3], the following was established both hypergeometrically and combinatorially:

Lemma 3.3 (Transformation formula)

2 2
i anqn (—bq; q2)n B i (ab)nq2n (_aq2n+l; qz)oo
2. 2 N 2. 2
S C Rt ) v (@5 q%)n

To prove the Lemma, expand (—bg; ¢2),, on the left-hand side using (1.6) and reverse the order of summa-
tion to get the right-hand side. The combinatorial proof of Lemma 3.3 uses a redistribution idea of Bressoud
(see [20, 21)).

The finite version of Lemma 3.3 is
Lemma 3.4

m+n

n m
N N2 k_k2|M n i 22 2i+1
E a'q qu [] [ } E(ab) [} (—ag® ™ g%
o = k 2 N —k L2

i=0

To prove Lemma 3.4, expand (—aqzi +1 qz)n to rewrite the right-hand side as

i(ab)’ 27 [ } Zal i *2’1[ } . (3.11)
q2

i=0 qu

If we rearrange the right-hand side of (3.11) by putting i + j = N, we get the left-hand side of Lemma 3.4,
thereby proving it.
Next in Lemma 3.4, replace a by ag and b by bqg to get

m-+n
ZaNqN +szk k2+k[ i| |: i| Z( b)l 2i +21|:ii| 2(_aq21+2’q )n (312)
q

In (3.12) replace ¢ with ¢ to get

m+n
ZaN Ty Zbk TkI: :II: i| Z(ab)t t+l|:ii|(_aqi+1)n. (3.13)
N=0

If we set a = 1 in (3.13), the right-hand side becomes

L0 . ..
m bigi~ti (_ l+1)n m bigt —H(_ n+1)i
R 10/ e e (3.14)

D ) i @S i @i

i=0
and so (3.13) and (3.14) yield (3.8).
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4 A power series identity unifying Schur and Lebesgue

Here we prove the following power series identity due to Alamoudi, from which (1.1) and (1.3) emerge as

special cases:

Theorem 4.1 With free parameters a, b, ¢, we have

e (e i+
; (@)i (_Zq)i (—bg" oo =)

t,j.l

@i (@e(q);

Proof We expand (—£g); and (=bg't1) 4 to get

2 alql /¢ ; _ >, alg
; @ (—;1)1_ SCAREED D=,

3
™

Now, for the sum on the right in (4.1), put # = i — j and simplify to get

albﬁc.iq7}+j+Tj+Tz+(t+j)f albﬁc.iqTHjH-FTj

(@):(@)j(q)e @) (@) j(q)e

t,j.t t,j,t

which proves Theorem 4.1.
We record two corollaries to Theorem 4.1:

Corollary 4.2 The key-identity (1.3) for the generalized Schur’s theorem holds.
Proof In Theorem 4.1, take ¢ = ab. Then, the left-hand side of Theorem 4.1 is

oo T
atqhi
(=bq9) o = (=a9) oo (=bg)c-
= @i
The right-hand side of Theorem 4.1 is
al+jb4+qur+j+z+Tj
T @i@j@e

Now, (1.3) follows from (4.2) and (4.3) with the replacements

t—ao, £— B, and j— y.
Hence Corollary 4.2.
Corollary 4.3 The Lebesgue identity (1.1) holds.

atbech Tivo4j+T;

@) E

o @iDi-j | \im

4.1)

4.2)

4.3)

Proof Take b = 0,a = 1 in Theorem 4.1. Then, the left-hand side of Theorem 4.1 is the left-hand side of
(1.1). Since b = 0, the only contribution to the right-hand side of Theorem 4.1 is from £ = 0, interpreting

b? = 1 always. So the right-hand side replacing ¢ +— i is
,+]+T CJ T;i+2T;+ij

S o @)i (@), _ZZ @)i(9),

i.j

j=0

=(—q>oo2( 2" = (O (eg’ g

and this yields (1.1). Hence Corollary 4.3.
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Remark 4.4 Since the Schur key-identity and the Lebesgue identity fall out as corollaries (but as two different
special cases), Theorem 4.1 provides the unification stressed at the beginning of the paper. This unification
is facilitated by the introduction of a third free parameter ¢ in Theorem 4.1. In [9] where the key-identity is
proved, the symbol c is used to denote parts of secondary color, but ¢ was always taken to be ab to get the
product on the right in (1.3). The motivation to introduce the third parameter ¢ in Theorem 4.1 is from the
short proof of the key identity; the split product

(=bq)i (—bg" oo

in the short proof is replaced in Theorem 4.1 by the more general split product
C .
(~4) (-bg" e
a /i

The above coincide when ¢ = ab. Now, again, consider the bijection in [9]. The sub-partition A, of mp
containing the parts < v(7,) in size is used to construct a new partition 7z, = 7, + (Ap)* with v(, ) = v(7,)
but now v(A;) of the parts have become ¢ parts.? This motivates the < factor.

Remark 4.5 Ramamani and Venkatachaliengar [29] generalized Lebesgue’s identity (1.1) as follows:

o~ 1'q" @) -
T Do) Y ————. 4.4
2 g~ @) ]Z:;)(q)j(—rq),- @D

Identity (4.4) can be proved g-hypergeometrically or combinatorially using vector partitions. Now (1.1) can
be deduced from (4.4) as follows: Take r = 1 and z = —cgq. Then the left-hand side of (4.4) is the left-hand
side of (1.1). With these values of z and ¢, the right-hand side of (4.4) is

(—eon(—a) i (=cq)) _ (—@oo(-Doo _ —@eo(—ca® &)
which is the right-hand side of (1.1). Thus Lebesgue’s identity follows from (4.4), but is different from our
derivation of (1.1) from Theorem 4.1, because we get ( —cqz; qz)Oo directly, whereas from (4.4), (—cqz; q2)OO
is obtained from the cancellation in

(_CQ)oo
(—¢q; ¢ oo

1

Remark 4.6 The replacement ¢ — cq~ " in (1.1) yields the equivalent identity

(oo} q ( C)l 00 . - 00 (1 +cq2m—l)
1 1 = _— 4.5
> @ =[Ja+gmHa+cg>h m]"[:1 T=a (4.5)

i=0 m=1

whose combinatorial interpretation yields Sylvester’s famous refinement [31] of Euler’s theorem. Ramamani
and Venkatachaliengar actually generalize (4.5) by establishing an identity equivalent to (4.4); we have pre-
ferred the version of their identity as in (4.4) in view of the discussion of Lebesgue’s identity in this paper.

Remark 4.7 Since the right-hand side in Theorem 4.1 is symmetric under interchanging a and b, it follows
that

S (Lq) b= 3P (L) ag
I L i=0 1
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Remark 4.8 We alert the reader that the dilation and translations in (1.4), as well as the translation ¢ — cq_3,

the right-hand side of Theorem 4.1 is the sum over generating functions of Schur partitions with the powers
of a counting the parts = 1 (mod 3), the powers of b counting the parts = 2 (mod 3) and the powers of ¢
counting the parts divisible by 3. More generally, the function

th+z+ j+T;

G, l,j) = ————
6D = @@,

counts Type-1I partitions of a prescribed number of parts of each color, specifically, ¢ a-parts, £ b-parts, and
J c-parts (see [10]). Type-1 refers to a general class of colored partitions, whose exact definition is given in
[10], that amount to Schur partitions under standard transformations. Furthermore, in [10], Alladi-Gordon
demonstrated that there are six schemes (i.e., Type-2 up to Type-6), all counted by G (¢, £, j).

In the next section, we shall establish a polynomial version of Theorem 4.1.

5 A general polynomial identity in three parameters

In this section, we prove a general multi-parameter polynomial identity due to Alamoudi, from which some
of the key results stated above follow either as limiting cases or as special cases.

Theorem 5.1 (Finite three-parameter Schur) For any pair of integers L, M, and parameters a, b, c, we have

— c i M i1 " M—il[M|[L—i—k
Zathl <_EQ)'(_bq+l)Li|:i:|= Z ab]cqu’*-’HH_Tk[ L ][l][ . ]

i>0 i,j.k=0 J

Proof Expand (—£q), and (—bg'*")_; to rewrite the left side of Theorem 5.1 as

i Ti(_C i M

;Cl q" <—;61>l_ (—bg +1)L—l[ ; :|
B iT,-iETki e [L =i\ [M
- Yy (k;(a)q H) gt V]

i>0 j=0 J
gl
i,j, k=0 J kIl
k<i
L Z ai—kbjcqui+j+Tk |:L._ij||:M_(i_k)j||:.M :I’ 5.1)
ij. k=0 J k ik
k<i
because
i|[M M—i+k M
= ) 5.2
A S [ 5
Theorem 5.1 follows by replacing i by i + k in (5.1). O

Remark 5.2 Another way to write the right-hand side of Theorem 5.1 to make it more appealing combinatorially
and symmetric is to replace

MM —j—k, (5.3)
which converts it to
3 aib ckgTie T [M’ U k+ Jj+ k)} [M/ —G k)} [L — G+ k)}_ .
i J

i,j.k

We now consider the consequences of Theorem 5.1.
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Corollary 5.3 Theorem 4.1 holds.
Proof Let M, L — oo in Theorem 5.1 to get Theorem 4.1. O

Corollary 5.4 The following finite (polynomial) version of Lebesgue’s identity holds:

Oon_ M k ToTvik| M — || M
N R i [

Proof Take b = 0, a = 1 in Theorem 5.1. Since b = 0, the values j > 0 do not make a contribution. Thus,
we put j = 0. This yields Corollary 5.4. O

Remark 5.5 The left-hand side of Corollary 5.4 is identical to the left-hand side of Theorem 3.1. But the
right-hand side of Corollary 5.4 is very different from the right-hand side of Theorem 3.1. Thus, Corollary 5.4
provides a different finite version of Lebesgue’s identity. However, the right-hand side of Corollary 5.4 can be
transformed into the right-hand side of Theorem 3.1. In fact, the left side of (3.4) is identical to the right-hand
side of Corollary 5.4.

Corollary 5.6 Theorem 3.1 follows from Theorem 5.1.

To realize that Corollary 5.4 is indeed a finite version of Lebesgue’s identity (1.1), let M — oo in Corollary
5.4. Then, the left-hand side of Corollary 5.4 is clearly

g1 (—cq);
IZ: (q)i

which is the left-hand side of (1.1). When M — oo, the right-hand side of Corollary 5.4 becomes

k T +2T+ik o k2T o Ti+ik

cq _ cq q
r @i@k =@ = (@i
- 2 ckg?Tk e © kg2 B )
_]; (@i (=4 Joo = ( q)OO];(q2;q2)k =(—4)oo(—¢q7; §7) 0>

which is the right-hand side of (1.1).

Remark 5.7 We point out that the product of the two g-binomial coefficients in Corollary 5.4 can be rewritten

as
M—il|[M M (@) m
= = 3 5-5
[ k M i } [i,k,M —i —k} (@i (Dr(@) M—i—k (>-3)

a g-multinomial® coefficient of order 3. In [10], Alladi-Gordon discuss how the generalized Schur partitions
are related to g-multinomial coefficients of order 3. This link of the Lebesgue identity with g-multinomial
coefficients of order 3 is yet another Schur-Lebesgue unification. In Alladi-Berkovich [7,Eqn. 1.15], a finite
version of Lebesgue’s identity is established; that identity has the product of two g-binomial coefficients as in
(5.5), but the link between Lebesgue’s identity with g-multinomial coefficients of order 3 and Schur’s theorem
is not considered in [7]. Warnaar [33] has provided a new proof of the Alladi-Berkovich finite version of the
Lebesgue identity.

Remark 5.8 In [6], Alladi-Berkovich prove both combinatorially and g-theoretically the following double
bounded version of the Alladi—-Gordon key-identity for Schur’s partition theorem:

rr [L1[M =71 = s ain M—i—j+k}[M—ji||:L—i]
] }_;" s i~k JLi—k] GO

3 In the case of the g-multinomial coefficient of order 3, such as in (5.5), we display all three indices i, kK and M —i — k whereas
for the ¢-binomial coefficient [’t’l ] we suppress M — i (this is standard notation; see for example [11]).
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If we multiply both sides of (5.6) by a'b’/ and sum over i, J, we get a double bounded version of (1.3). Our
Theorem 5.1 has a third parameter c and is different in shape from (5.6), but with certain special choices and
substitutions, Theorem 5.1 will yield (5.6). In particular, if we set ¢ = ab in Theorem 5.1 and replace i — i’
and j — j’, then we get

i M—i[M][L—i —k

(—a@u(=bg)L = Y a'b (abrqlreratTe| 7 7 L (5.7)

= k l/ J/
ik

In (5.7), by setting i =i’ 4+ k, j = j' + k, and comparing the coefficients of a'b/ we get

N N ] (R Sy
i J J l

i'j' k
i/+k:i,j/+k:j

Setting M — M — j in (5.8) and simplifying the left-hand side yields (5.6). Notice, however, that the double
bounded version of (1.3) obtained by multiplying both sides of (5.6) by a’' b’/ and summing over i, j is different
from (5.7).

Remark 5.9 For M > 0, setting b = 0 in Theorem 5.1 gives

M
i Tio_ € .M = ik Tipr+Ti M
;aq ( aq)l[i]_;acq koM —i—k]

Letting ¢ — 1 gives

M

- c (M ; M

i1 Y — ik .
;a(+a)<i> ;ac(i,k,M—i—k>

The left-hand side is
M

Z(a—i—c)i(ﬁil) =(1—|—a+c)M.

i=0

The above is an instance of the trinomial theorem.

6 A key identity for the Alladi-Schur Theorem

Schur’s partition theorem has always been associated with the modulus 3 or the modulus 6, the latter because

0 00 1
A+g" A +¢" ) = . 6.1)
”1;[1 ml—[:I (1 _ q6m—5)(1 _ q6m—1)
Sometime during the 90s, the second author noted that
o0 1 00
2m—1 4m—-2
I1 —6m—5\(] _ jom—1 =[Ja+4q +4q™"), (6.2)
m=1 (1 q " )(1 q " ) m=1

where the second product in (6.2) is the generating function of A(n), the number partitions of n into odd parts
repeating no more than twice, and suggested to George Andrews that it would be worthwhile to explore the
deeper connections between the equality

S(n) = An). (6.3)

Andrews dubbed the equality in (6.3) the Alladi—Schur Theorem and established in [14] the following deep
refinement:
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Theorem A (Andrews’ refinement of the Alladi—Schur theorem)

Let A(n; k) denote the number of partitions of n into odd parts repeating no more than twice and with exactly
k parts.

Let s(n; k) denote the number of partitions of n into parts that differ by > 3, and with no consecutive
multiples of 3, and having exactly k parts, where the even parts are counted twice. Then

An; k) = s(n; k). (6.4)

Remark 6.1 What is surprising is that in Theorem A, partitions of the Schur type are classified according to
their parity. Thus, the equality (6.2) has provided a fresh direction for the investigation of Schur partitions.
Andrews’ proof of Theorem A [14] was g-theoretic. In view of the combinatorial elegance of Theorem A, it is
natural to ask if there is a combinatorial/bijective proof; such a proof was recently found by Alamoudi in [1],
and it turned out to be quite intricate. Some notions in [1] share a resemblance with, but are different from,
some of the notions in Kurgungoz’s important paper [28] on Schur’s partition theorem.

With the combinatorial proof of Theorem A having been found, the following question arises. Can Theorem
A be cast in the form of a g-hypergeometric key identity? We answer this in the affirmative below.

In [28], Kursungoz obtains, by combinatorial arguments, a series generating function for the Schur parti-
tions, which is different from the series in the Alladi—-Gordon key identity; then, by the same combinatorial
arguments, he obtains a series generating function for Schur partitions by keeping track of the number of even
and odd parts. His result is:

Theorem K Let s(n; my, mg) denote the number of Schur partitions of n having m odd parts and mq even
parts. Then

Z s(n;my, mp)a™ b g" = Z

my,mo,n>0 ni1,n10,721,122>0

X q

q6n%] —no1+6n%,+nm+2n% —ny +2n%,

(g% qz)nn (g% q2)n10(q6; ‘16)1121(‘]6; qé)nzz
12n21n22+6(n21+n22) (n11-+nio)+4niinio gnat-tnoatni pra+nontiio

(6.5)

In deriving Theorem K, Kursungéz groups the Schur partitions of 7 into disjoint pairs, which are parts that
differ by exactly 3 (with a certain convention when there is a maximal chain of ¢ parts differing by 3 with ¢
is odd), and calls the rest singletons. In the above identity, n1; (resp. njg) is the number of odd (resp. even)
singletons, and nj; (resp. ns2) is the number of 1 (mod 3) (resp. 2 (mod 3)) pairs. We now point out that in
view of Andrews’ refinement of the Alladi-Schur Theorem and Kurgung6z’s series representation (6.5) for the
generating function of s(n; my, mg), if we choose

b=a? (6.6)
then the series in (6.5) will be equal to the product

0
[T +ag® " +a?q*2), 6.7)

m=1

and this yields the key identity for Theorem A. That is

> stimymo)a™ tg" = >

my,mp,n>0 ni1,110,121,122>0

q 613, —na1+6n3,+nap+2n3, —ny1+2n3,

(% 4% 4% 4n10@% ¢ na1 (@0 GOy

oo
12 4 2 2m—1 2 4m—2
x g 121 t6(aitna) ritmo)+4niinio g 3naH3nn+nn+2mo — 1_[(1 +ag? 4+ a?q*m?)

m=1

(6.8)

is the key identity for Theorem A. This seems to have escaped attention. Itis desirable to have a g-hypergeometric
proof of (6.8). Kursungdz’s method has been used by other authors to obtain new series generating functions for
various fundamental partition functions. But Theorem K had not been considered in conjunction with Theorem
A, which is the reason that the key identity (6.8) for Theorem A presented here had escaped attention. In [13],

@ Springer
“40065_2025_578_ArticleOA” — 2025/10/31 — 7:29 — page 12 — #12



456
457
458
459

460

461

15

464

465

466

467

468

469
470

471

473

474

475

476
477

8

480
481
482

483

484
485
486
487
488

494

495

496

Arab. J. Math.

Andrews has expressed the view that the new direction for Schur’s theorem presented by Theorem A is deeper
and more significant than the classical version of Schur’s theorem. This is confirmed by the complexity of
the key identity (6.8), for which, at the time of this writing, a g-hypergeometric proof is not known. There is,
however, another series representation for the generating function of s(n; m, m3), due to Andrews—Chern—Li
[15], which is

(_ 1)113an1+n2+2n3bn2+n3

Yo stimima™ g =y

n,mp,mp ni,n2,n3>0

(@% 4P)n, (@% 4Pny (@ GO,
% q2n%—nl+2n%+9n§+2n1n2+6n1n3+6n2n3' (69)

When one sets a = b in (6.9), which means that the even parts are counted twice, then one can set the resulting
expression equal to the product on the right in (6.8). Thus, we have the identity

2

ny,nz,n3>0

_1\3 4n1+2n2+3n3
( ]) a 2n%7n1+2n%+9n%+2n1n2+6n1n3+6n2n3

X
(% 49 (4% 4Pn2 (@0 qO)ns
o0
=[] +ag> " +a*q" ). (6.10)
m=1

Andrews—Chern-Li provide two proofs of (6.10), one g-hypergeometric, and another which is computer-
aided. But it is to be noted that in (6.9) and (6.10), there is the factor (—1)"3, and so it is not transparent that
the coefficients in the power series expansion are non-negative. On the other hand, it is transparent that the
coefficients of the series on the left in (6.8) are all non-negative.

7 The Capparelli theorems and the key-identity

Through a study of vertex operators in Lie algebras, Capparelli [22] conjectured the following partition theorem:

Theorem C Let C*(n) denote the number of partitions of n into parts = £2, 3 (mod 12).

Let D(n) denote the number of partitions of n into parts > 1 with minimal difference > 2, where the difference
is > 4 unless consecutive parts are multiples of 3 or add up to a multiple of 6. Then

C*(n) = D(n).

The first proof of Theorem C was due to Andrews [12] by the use of generating functions. Subsequently,
Alladi—Andrews—Gordon [5] noticed that if C*(n) is replaced by the equivalent partition function C (n), which
is the number of partitions of n into distinct parts = 2,3,40r6 (mod 6), then there is a three-parameter
refinement, namely:

Theorem C-R Let C(n; i, j, k) denote the number of partitions of the type enumerated by C (n), with the
added restriction that there are precisely i parts = 4 (mod 6), j parts = 2 (mod 6), and of those = 0
(mod 3), exactly k are > 3(i + j).

Let D(n;i, j, k) denote the number of partitions of the type enumerated by D(n) with the additional
restriction that there are precisely i parts =1 (mod 3), j parts =2 (mod 3), and k parts = 0 (mod 3). Then

C(n;i, j,k)=Dn;i, j, k).

Alladi—Andrews—Gordon [5] established a generalization of Theorem C-R by the method of weighted words
(which was initiated in Alladi-Gordon [9] to establish a generalization of Schur’s theorem), and viewed this
generalized theorem as the combinatorial interpretation of the following key identity:

a'blg*T2Ti(—q)iy j(—cq Mo
(@% 9»i(q* q4?);
aibjcquTiJrZTjJerJr(iJrj)k |:l+]+k:| |:l+]:|
B (@it j+k k L dp

(7.1)
i,j,k !
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The sum on the right in (7.1) could be rewritten as

Z a'bd kP PATAGEDE ()i (45 7)isg
Y (@)i+j+k @i+ @Dk (q%: 4%)i (g% q?);
aibi g2l 2T Te+ i+ )k

(=q)i+j Z c*q

(@% qDilg* 9D

=> a'blg* 2T (=q)ig j(—cq Mo (7.2)
(4% 4»)i (g% q%); . |

(@

ij
If we take ¢ = 1, then the term in (7.2) becomes
al bl g2Ti+2T;

—4/0 == 2§2oo_b2§200_ 00" 7.3
X ;(q2§qz)i(92;q2)j (7a47: 4700 (=047 4700 (=4) (7.3)

If we make the replacements

g q’, arq % b gt (7.4)

in (7.4), we get the generating function of C(n) in Theorem C-R.

Capparelli [22] had stated another partition conjecture in the form A*(n) = B(n). The difference between
the conditions defining B(n) and D (n) is that among the partitions enumerated by B(n), the integer 2 should not
occur as a part, but 1 is allowed as part. The generating function of A*(n) is a product that is more complicated
than the product generating function of C*(n). However, it turns out that A*(n) = A(n), where A(n) is the
number of partitions of n into distinct parts = 1, 3, 5, or 6 (mod 6). So, this second conjecture is equivalent
to A(n) = B(n). This conjecture can be proved by applying the transformations

g q°, ar g, b g, (7.5)

and by combinatorially interpreting the resulting g-hypergeometric identity. So what we stress here is that in
[5], by considering partitions into distinct parts in certain residue classes modulo 6, instead of partitions into
parts in certain residue classes modulo 12 (parts that could repeat), not only is the second partition theorem
of Capparelli cast in a more elegant form, but also that such a reformulation is capable of refinement and
generalization. The idea that reformulating partitions into certain distinct parts is capable of refinements was
initiated in Alladi—-Gordon’s treatment of Schur’s theorem [9] and indeed that was instrumental in developing
the method of weighted words which is widely applicable.

It is to be noted that when we set a = 0, the generalized Capparelli product on the right-hand side of (7.3)
reduces to

(—b4; 4% oo(—q) o> (7.6)

which is the product for Lebesgue’s identity. In view of this link between the generalized Capparelli identity
and Lebesgue’s identity, it is natural to ask whether a finite version of the Capparelli key identity can be
obtained from the Transformation Formula (Lemma 3.3) in Sect. 3 just as we obtained the finite version of
Lebesgue’s identity from Lemma 3.3. The answer is YES. Indeed, Alladi (1994, unpublished), obtained the
following from Lemma 3.3: For positive integers m, n, we have

ZZ(bc)'aquTl“T-f[.] H (—cq" ™ ey
1 q J qz

j=0i=0

m+n+4~ n m m n e—l‘]

_ N, Ty bial g Ti+2T) , 7.7
T R 1 M o I
N=0 q q q

j=0i=0 J
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If we let m, n, £ — oo in (7.7), then we get

X X (be)ialg?T 2T (—g)i (—cqi T )y 0 N, Tn(_p
ZZ( c)ialq - 2/( 29) (2 cq') _ (_aqz;qz)oo Z g N ( Q)N. (7.8)
prr e (@73 99)i(qa%: q7); o (@

Identities (7.7) and (7.8) are different from the Capparelli key identity (7.1) in the sense that in (7.1) we have
(=q)i+j(—cq' Tt s, whereas in (7.8) we have (—q);(—cq'™!)oo. However, when ¢ = 1 both versions are
the same, and the expression on (7.8) becomes the product

(—aq*; 4% oo(—bq%; ¢H)oo(—q) - (7.9)

But there is a general version of (7.1), which specializes into a polynomial identity, with a free parameter ¢
where the decomposition involves (—¢g); 4 ; as noted by Alamoudi: For integers My, M, L, we have

> a’b"CIZT’+2Tf[ : } [ : :| (—qi+j(=cq™ T
720 l qz J qz

Loie ok ly, (2My—2i42. 2\ ( Ma—2j42. 2\ i 4 i S
Z aibjckq27}+2Tj+Tk+(i+j)k(q D (@M T g ) (M R g |:l+]+k]|:l+1i|
qZ

i,j k=0 (@)i+j+k k i
(7.10)
In particular, for non-negative integers My, M, L, with L > M| + M, we have
My M
Lo | M M> it
) zbq[ . ] [ . ] (@i (—eq Y i
i=0 j=0 bl ) dg?
_ Z aibjckq27}+2Tj+Tk+(i+j)kI:' L k} [i + i—i—k] [i +J}
i k=0 Lyt Lodg?
i<My, j<Mj,i+j+k<L
5 (q2M1—2i+2; q2)i(qM2—2j+2; q2)j (7 11)
(gt=i =7y,
After performing various cancellations, the right-hand sides of (7.10) and (7.11) become
S aibickgP T ATk [M '} [Mﬂ [L wJ }(—q»ﬂ-- (7.12)
ij k=0 Pl 7 dg? k
If we sum the inner sum over k and use
oo TL—i—i o
chl]TH(lﬂ)k[ L ’] = (—cq" iy, (7.13)

k=0

we get the left-hand sides of (7.10) and (7.11). If we let M1, M>, L — oo, we get the (infinite version)
Capparelli key identity given by (7.1) and (7.2).

Remark 7.1 We have given the intermediate identities (7.10) and (7.11) because they maintain the form of
(7.1), which is the key identity of the original Alladi—-Andrews—Gordon three-parameter refinement of the
Capparelli partition theorem. The combinatorial significance of the form in (7.1) is that it highlights the
generating function [5, Eq. (5.5)] which counts the relevant minimal partitions.
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Remark 7.2 Given the generality of (7.10), we can apply the same bound shifting technique used to obtain
(5.6) from Theorem 5.1 and get other finite analogs of (7.1). Specifically, by setting the coefficients of a'b’
equal, we get

s | My M, it
aleCIZT’+2Tf|: . } |: . ] (—q@)itj(—cq" T i
1 !12 q2

L—i—j—k+1 2M=2i+2. 2 My—2j+2. 2 . . . .
:Zaibfcqur,-+zrj+n+(i+j>k(q D@ T )i (@M ) [’+J+k}[’+f] _
(@i+j+k k i,

k>0
(7.14)

The above equation is valid for any choice of integf;rs. My, M, L, i, j with i, j > 0. Setting M| = L — j,
M, = L, canceling using (¢“ /=T, = (g7t (¢*/*); for any a € Z, and summing for all
i, j > 0gives, forany L € Z,

o [L— ] TL L
ZaleQZT’HT’[ . } [ ] (=@)i+j(=ecq" Y i
l q° ] qz

i,j=0

= Y aivickgranstisae] b AIETERIEAT iy g s)
et i+j+k k i !

The point is in (7.14), the integers M, M», i, j, and L are fixed and only k is being summed over. Thus, many
substitutions can be made, perhaps sending M to something that depends on j, and the expression remains
valid, after which one can sum over i, j > 0. This way, one may obtain a myriad of other finite analogs of
(7.1). However, the same liberty does not necessarily extend to shifting by expressions involving k since k is
still bound by the summation in (7.14) and is not free as i > 0 and j > 0 are in (7.14).

In closing this section, we note that when we set @ = 0 in (7.9), the Capparelli product generating function
reduces to the product generating function for Lebesgue’s identity, and if we further set b = 0, we get the
product generating function for Euler’s theorem on partitions into distinct parts. This leads us to an infinite
hierarchy of identities observed by Alladi [3, unpublished], of which the first three cases are those of Euler,
Lebesgue, and Capparelli, in that order. We present this in the next section, along with a new polynomial
version of this infinite hierarchy due to Alamoudi.

8 An infinite hierarchy of ¢g-hypergeometric identities

In 1994, Alladi observed that for each non-negative integer r, there is the identity

vy V2

vk
Z ay a, ---a;"c'q

s k0 (@%: 49 (4% gD, - (4% 4D, (@i

V1,2, 020

2Ty, +2T0y 42T, + T +k (Vi +va+--vk) () I

Vi V2 vr 2T, +2T,, --+2T, 1
apay ---ap’'q” e (=) vy vy, (—eg T

(@290, (q% g% v, -+ (g% %),

8.1)

Identity (8.1) is easily proved by summing over k the inner sum on the left-hand side. When ¢ = 1, identity
(8.1) becomes

vy V2

Y e

V1,2,V k>0

v 2T, +2T,, --+2T,, +Ti+k(vi+vo+---
ceayr g™ vy 2T, + Ttk (Vi +va+ k)(_CI)v1+vz+<--uk

(@% 40, @35 9%, -+ (@% 4P, (O

= (—a19%; 4P oo (—024%: ¢%)oo - - (arq%; 400 (—@) oo (8.2)

Note that the case r = 0 in (8.2) is Euler’s identity for partitions into distinct parts, the case r = 1 gives the
product for Lebesgue’s identity, and the case r = 2 yields the product for the generalized Capparelli identity
(7.3). This was the motivation to come up with this infinite hierarchy:

Euler(r =0) — Lebesgue(r =1) — Capparelli(r=2) — ---. (8.3)
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To get regular partition theorems (not weighted ones) from (8.1) and (8.2), the minimal dilation is

qg—q"", (8.4)
and this is the optimal dilation. There are several choices of residue classes modulo r 4+ 1 = m for this dilation:
Let j1, j3, ..., jr be incongruent modulo m, with 0 < j; < 2m, j; # m. Consider the translations

ai — aig ™ for i=1,2,...r. (8.5)

We will now turn our attention to the corresponding partition theorem. However, we must first discuss the
important notion of level parities. We begin by alerting the reader to the following convention we adopt in the
sequel.

In the sequel, we adopt the following convention. Whenever we say that a partis = j (mod M), we mean
a part of the form j 4+ AM, with the integer A > 0. In particular, the part is > j. For example, if a part is = 4
(mod 3), that part must be one of 4, 7, 10, .. ..

For each part p = j (mod M), such that M { j, we say that p has odd level parity as a j (mod M) part
if p = j + AM with A odd. Otherwise, we say p has even level parity as a j (mod M) part.

Remark 8.1 In the sequel, we will simply say that a part p has odd/even level parity and omit the prepositional
phrase “as a j (mod M) part" as it will be clear from context. Nonetheless, we would like to alert the reader
to the following subtlety. In general, the level parity of a part p depends on the specific choice of j and M. For
example, 7 has odd level parity if j =2 and M = 5, but even level parity if j = 1 and M = 3. Moreover, in
view of the above convention, even if j = j' (mod M) in the traditional sense, j and j’ can define different
level parities for p. For example, 7 has odd level parity if j = 4 and M = 3 but even level parity if j = 1 and
M = 3, even though4 =1 (mod 3).

Theorem H Let A(n; vy, va, ..., v; 2m) denote the number of partitions of n into v; distinct parts = j;
(mod 2m) and distinct parts = 0 (mod m), fori =1,2,...,r.

Let B(n; vy, va, ..., v; m) denote the number of partitions of n into v; distinct parts = j; (mod m) for
i =1,2,...,r such that the difference between two parts of different level parities is > m, and distinct parts
=0 (mod m) each > (j1 + jo+---+ jr-)m.

Then, we have

A, vi,vo, ...,V 2m) = B(n; vy, v, ..., v m). (8.6)

Remark 8.2 In the combinatorial proofs of Schur’s theorem in Alladi—-Gordon [9], and of Capparelli’s theorem
in Alladi-Andrews—Gordon [5], a combinatorial method due to Bressoud is followed. This method involves
two stages: Stage 1 is an embedding (of the Ferrers conjugate of the distinct parts = 0 (mod m) which are
< (v + v2 + --- + v)m into the Ferrers graph of the partitions parts into distinct parts = j; (mod 2m)
fori = 1,2,---,r. This is followed by Stage 2, which is a rearrangement, which we call the Bressoud
rearrangement, and this is more complicated. Itis only after the rearrangement that we get a partition satisfying
certain difference conditions. The partition function A in (8.6) is at the product level, and this is the start of
the combinatorial construction. The partition function B is at the embedding stage of the combinatorial proof.
What we require is the partition function C (whose parts satisfy difference conditions based on the residue
classes), which results AFTER the Bressoud rearrangement is completed. We expect to present the function C
after working out the details in a subsequent paper [2] devoted to the combinatorics of various identities that
have been presented here. However, we will present C in a certain special case (see Theorem C5).

Remark 8.3 We note the following with regards to Theorem H.

(1) It is to be noted that for the partition function A in Theorem H, the modulus is 2m, whereas for the
partition function B, the modulus is m. This halving of the modulus for B is due to the embedding.

(i) Due to observed combinatorial insights and intricacies, the authors have refined the statement of Theorem
H, as well as Theorem C5 presented later in this section, in this version of the manuscript. This includes
the introduction of the notion of level parities. Regarding this notion, it is important to note that although
the difference between two parts of different level parities is > m, in view of the definition of level parity,
consecutive multiples of m are allowed for Theorem H.
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In the case r = 1, the dilation gives the Little Gollnitz theorems, not the Lebesgue identity which corre-
sponds to the undilated case.

Forr = 1, the function C is as in Corollary 24 of Alladi-Gordon [8]. There, the function B is not mentioned.
It would be B(n; j,2) = the number of partitions into j distinct and non-consecutive odd parts, and even
parts, each > 2j.

In the case r = 2, which corresponds to Capparelli’s theorem, C and A are known, but B is not mentioned.
It will be B(n; vy, va; 3) = the number of partitions of n into distinct vy parts = 4 (mod 3) and distinct vy
parts =2 (mod 3) such that the gap between parts of different parities is > 3, and distinct parts = 0 (mod 3)
each > 3(vi + vp).

Actually, there are two theorems of Capparelli (which correspond to the case r = 2). For the first theorem,
the function A has generating function

(=a19%: 4" oo(—a20": 4°)oo (=471 ¢ )0 8.7
The second theorem of Capparelli corresponds to the generating function of A(n) being

(=193 4) oo (~24”: 4% (=471 ¢ )0 (8.8)
When we set a; = a» = 1, the product in (8.7) becomes

1 1
(@3 3%900(@% 400 (@'% ¢ (6% 9% 410 (025 412) 0 (0% ') 0

It is in the unrefined form as in (8.9) that Capparelli stated his conjecture. It was in Alladi-~Andrews—Gordon
[5] that the product in (8.9) was replaced by (8.7), which had the advantage that the theorem could be refined
by introducing parameters a1, a,. When we set a; = a; = 1 in (8.8), it does not yield a product as nice as in
(8.9), but more complicated, and it is such a product that Capparelli stated. Again, the advantage of considering
distinct parts, as pointed out in [5], is that Capparelli’s second theorem can be more neatly expressed in terms of
the product (8.8). So the question that arises is whether, for » > 3, there are such special choices of the residue
classes modulo 2m = 2(r 4 1), where the product in terms of distinct parts determined modulo m transforms
neatly into a product where the modulus is 2m, and the parts can repeat as in (8.9). Such a phenomenon does
not occur when r = 3, but does occur for all even » > 4. We illustrate this with an example of r = 4 (so
m = r + 1 = 5). Thus, as per Theorem L, we need to choose four residue classes mod 10, which are
incongruent mod 5 and unequaltoOor5 (mod 10). The ideal choice is 2, 4, 6, 8 (mod 10). This then gives

(8.9)

(=4% 4" 50 (=% 7 00(—=¢% 4" 0 (—¢%; ¢ oo (—¢%; ¢ o0
1
(0% 4%(0% 4200 (@% 4200 (g5 4250 (135 420 o

which is an ideal extension of Capparelli’s first theorem to the level » = 4. Thus, the combinatorics underlying
this infinite hierarchy is fascinating, and we hope to discuss this in a subsequent paper [2]. But for this paper,
we will only state the Capparelli theorem in the higher case r = 4 (m = r 4+ 1 = 5), which we can prove
combinatorially by the method given in Alladi-Andrews—Gordon [5].

, (8.10)

Theorem CS Let A(n) denote the number of partitions of n into distinct parts = 0,2,4,5, 6, or8 (mod 10).
Let C(n) denote the number of partitions of n into parts = 2,5, 6, 14, 15, or 18 (mod 20).

Let D(n) denote the number of partitions A = A1 + - - - Ay, written in non-increasing order, with distinct
parts not equal to 1 or 3, such that:

(i) The gap is > 5 if two consecutive parts have different parities or one of them is a multiple of 5, with gap
5, only allowed for consecutive multiples of 5.

(ii) Whenever 5|Aj, we have i — Ajyj > Sjforl1 <i <i+j <L
Then,

A(n) = C(n) = D(n).
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Remark 8.4 In [2], we will consider a general form of the second condition for D(n). Namely, for modulus m
we consider partitions with the property that whenever m|A;, wehave A; — ;1 ; > mjforl <i <i+ j <{.
We will also consider a dual variant of this notion. These considerations will be in the context of higher analogs
of D(n) featured in Theorem C5. Conversely, for lower m, namely for Capparalli (i.e. m = 3), we note that
condition (ii) is redundant.

The combinatorial proof actually gives a four-parameter refinement of the equality A(n) = D(n) in which
we can keep track of the parts = 1,2, 3,4 (mod 5). Note that for the partition function A(n) in Theorem
C5, the parts = 1, 2, 3,4 (mod 5) are actually in the form 6, 2, 8, 4 (mod 10). All this will be presented in a
subsequent paper along with the combinatorics of the infinite hierarchy.

For this manuscript, however, we will conclude with a discussion of the polynomial infinite hierarchy. In
particular, Alamoudi has recently noticed that the following polynomial (finite) identities correspond to (8.1)
and (8.2). For simplicity of the expressions, put N = v; + v, +- - -+ v,.. Then, for integers M1, M, ..., M, L,

we have
T, T, T,, M, M M, L—N
Yo at'q "l a) g qT"*"N[V} [V} -~~[U’} [ L ](—q)zv
Ldg LV2 g, r g,

V..o, Uy, k>0
= (—a1q1; q) m, (—a292: @2)m, - - - (—arqr; gr)m, (—q) - (8.11)

Notice that when M1, M, ..., M,, L are non-negative, with L > M| + M» + - - - + M, the sum on the left
is equivalent to the conditions that

O0<vi<M; for i=1,2,...,r, and N +k <L. (8.12)

To prove (8.11), sum the inner sum over k and use

- N
ch Tk+Nk|: L i| — (_CqN+1)L_N’ (813)
k>0
and
T,. | M; .
(—aiqis gi)m, = ) aiq; [ } for i=1,2-,r (8.14)
v,
v; >0 4i
When ¢ = --- = ¢, = ¢>, we obtain

3 altal e arrckq T Tt o)+ TNk My| | M
172 r i "

M [L-N
1 R 2

= (—a1¢%; ¢, (—a2q% 4P, - (—ar g ¢, (=)L (8.15)

Moreover, when M; fori = 1,2,...,r and L all — oo, (8.11) reduces to (8.2). On the other hand, for a
polynomial analog of (8.1) maintaining the form of (7.1), we first write the LHS of (8.1) in the form of (7.1)
to get

vy vy v
Z a; ay, ---a;"c'q

% vi+--+v+k
vtk |,
vy V2 Vr 2Ty +2T,, 42T,

B Z ayay, ---ay'q

k 2Ty, +2Tyy 42Ty, + Tk +k (v +va+-v)) |:v1 e ]
+-F v,
6]2

(Q)v1+v2+---v,+k Vi, eooy Vr

" (_q)V1+V2+“~UV (—chI+U2+~~+pr+1)oo

% 490, @% %), -+ (@% 42,

(8.1b)
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As before, for simplicity of the expressions, put N = vy 4+ vy 4 - - - 4 v,.. Then

L-N—k+1
S aal o al kg T A T A TR (¢ )k[ N }
1 % r €4
(DON+k Lvis-vr 2

V1,2, Ve k20

N+k] OM;—2v;42. 2
X[Mk]qﬂ(q 54 )

§ : M M, M
— ai’laé& . a:rq2(Tu1+Tv2+ +Tvr)|: ] |: i| L. |: ri| (—Q)N(_CQN+1)L—N-
q° q° q?

V1] V2 Vy

In particular, for non-negative integers My, ..., M,, L, with L > M + - -- 4+ M, we have

ala? avr Ck 20070, Ty )+ Ttk (01 +va+--vr) L N
P dred N+k], |v v,

V1,V2, eV, k>0 gLVl -ees rdq?
VI=My,...,vy <My N+k<L

VAR T @2 g0y,
N,k p (qL—N+l)N

My M M,

(8.16)

=YY Y a2t [ M M e .
1972 " Vi g2 1% q2 v, q2

v1=0v2=0 V=0 r

(8.17)

In the same way as before, when M; fori = 1,2,...,r,and L all - 00, (8.16) and (8.17) give (8.1b). We

note that just like (7.10), the LHS of (8.16) could be written in the form of the LHS of (8.11) or (8.15),

then the

identity is evident. However, we emphasize this form because it maintains its resemblance to the original (7.1).

Furthermore, the form* of (8.11) does not exploit the pivotal role the substitution g; = - - - = ¢, = ¢ playsin
giving this form. For example, for the substitution g; = - - - = g, = ¢° it is not true that the form is preserved.
In particular, for any function € (g, My, ..., M,, L) suchthate(q, My, ..., M,, L) — las My, ..., M,, L all

— 00 we have

avlav2 e avrck 3(Tv1 +Tv2+"'+Tvr )+ T +k(vi+va+--vp) L N
172 red N+k],|v vV
V1V, k>0 gLV e Virdgs
N +k
X

S My,...,M,, L
N,k]qe(q 1 vy L)

M M M
£ Z a‘l’laz”2 .. .arvrq3(Tu1+Tu2+ +Tw)[ } |: :| |: ’} (—q)N(—CqN+l)L_N.
q3 q3 q3

V1,V2,...,0:>0 Vi V2 Vr
3
This is because, if we take ap = --- = a, = ¢ = 0 and let M| — 00, the coefficient of a; in LHS is lq—_q and
3
the coefficient of a; in RHS is %;”f). This is to say, if we set g = -+ = g, = q’”/, only the case m’ = 2

gives the form of (7.1).
Remark 8.5 Like (7.10), using the bound shifting method on (8.17) gives, for any L € Z,
r L N N +k
vio v k200 To)+ Ttk N _ L-N+1
Z 4 4 cq |:N—|—ki|q|:v1, ..,\)ri|q2|:N,ki|q( i I

,
r L — L Vi
= > a}”aé’z~~~a}’"612(z"—‘T“")l_[[ i<z j] 2(_51)N(_CCIN+1)L—N
q

. 1%
V1,2, 020 i=1 !

. (8.18)
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Remark 8.6 In [2] we will consider [5,Eq. (5.5)] as an instance of the more general equation below.

HWi,...,v k) = (/]2T"l+"'+2TVr+Tk+k(v1+v2+'"v’)|:Vl oot v,] x |:Vl tooedert k]
Voo Ve g2 Vit -tk ],

We will interpret the above function combinatorially in a manner that has similarities and differences to the
interpretation in [5]. This interpretation highlights the combintorial significance of the forms (7.1) and (8.1b).

Work of Berkovich—Uncu: Berkovich and Uncu [16-19], provided three separate finite polynomial identities
that imply Capparelli’s identities as limiting cases. The original polynomial identities were found by imposing
bounds on the combinatorial constructions that Kursungoz [27] introduced. Their proofs used an automated
deduction method and recurrences. The proven polynomial identities also led to the discovery of infinite
hierarchies of sum-product identities that include Capparelli’s identities [16, 18]. Similarly, Uncu [32], by
refining Kursungoz’s construction, proved a polynomial identity that implies Schur’s partition theorem. The
results and methods in this paper are different from these related works.

Concluding thought: Two things have been accomplished in this paper: (i) a unification of Schur’s theorem and
Lebesgue identity, and (ii) an infinite hierarchy of ¢g-hypergeometric identities of which the initial ones are the
identities for the partition theorems of Lebesgue and Capparelli. The unification of the Schur and Lebesgue
partition theorems was motivated by the fact that the basic idea behind both of their combinatorial proofs was
the same—namely, a method of Bressoud suitably adapted to each of the two. Since the combinatorial proof
of Capparelli’s theorem in [5] also uses the technique of Bressoud, it is our desire to unify the theorems of
Schur, Lebesgue, and Capparelli by a common scheme.
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