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Abstract: A 1999 theorem of F. Schmidt states that the number of partitions into
distinct parts such that the odd indexed parts sum to n, is equal to the number of parti-
tions of n. Recently, using MacMahon’s partition analysis, Andrews and Paule established
two further theorems of the Schmidt-type. Here we show that Schmidt’s 1999 theorem is
equivalent to a weighted partition identity involving Rogers-Ramanujan partitions that I
established in 1997. Using the weighted partition approach, we shall also establish combi-
natorially the two recent Schmidt-type theorems of Andrews-Paule. We conclude by proving
another Schmidt-type theorem using weighted partitions.
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§0: Introduction and statement of results

In 1999, F. Schmidt stated the following theorem in the American Mathematical
Monthly [10] and asked for proofs:

Theorem 1 (Schmidt): The number of partitions into distinct parts such that the
odd indexed parts sum to n, is equal to the number of partitions of n.

Proofs were given by several mathematicians including Schmidt. Here we first show
that Theorem 1 is equivalent to the following weighted partition theorem in my 1997 paper
[1, Theorem 1]:

Theorem 1*: Let ρ : b1 + b2 + · · · + bk be a Rogers-Ramanujan partition, namely a
partition with difference ≥ 2 between parts. Put bk+1 = −1. Define the weight w(ρ) as:

(1) w(ρ) =
k∏
i=1

(bi − bi+1 − 1).

Then

(2)
∑

ρ∈R,σ(ρ)=n

w(ρ) = p(n),

where R is the set of partitions with difference ≥ 2 between parts, and p(n) is the number
of (unrestricted) partitions of n.

In Theorem 1* and in what follows, σ(π) denotes the sum of the parts of a partition
π, namely, the integer being partitioned.

Of the different proofs of Theorem 1, the proof by Uncu [12] establishes the equivalence
of Theorem 1 and 1*; his proof is related to, but different from what we give here.

I noticed Theorem 1* in 1994 during a visit to The Pennsylvania State University, and
that is what led me to a study of weighted partition identities [1], [2]. In §1, the equivalence
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of Theorems 1 and 1* will be established and the combinatorial proof of Theorem 1* in
[1] will be recalled.

By a Schmidt-type partition theorem, we mean a result involving the number ψ(n)
of partitions π : a1 + a2 + · · · such that a certain sub-sum of π is n. Using MacMahon’s
Partition Analysis, Andrews and Paule [3] recently established the following two Schmidt-
type results:

Theorem 2 (Andrews-Paule): Let s(n) denote the number of partitions

(3) a1 + a2 + a3 + a4 + · · ·

satisfying

(4) a1 ≥ a2 ≥ a3 ≥ a4 · · ·

such that

(5) a1 + a3 + a5 + · · · = n.

Then

(6) s(n) = p2(n),

where p2(n) is the number of partitions of n in two colors.
Remark: It has been brought to our attention that Theorem 2 was established in

2018 by Uncu [12]. But our proof (given below) is different.

Theorem 3 (Andrews-Paule): Let u(n, k) denote the number of partitions

(7) a1 + a2 + a3 + · · ·+ a3k

satisfying

(8) a1 > a2 > a3 · · · > a3k−1 > a3k ≥ 0

such that

(9) a1 + a4 + a7 + · · ·+ a3k−2 = n.

Let v(n, k) denote the number of partitions of n in three colors, such there are exactly k
parts of the first color with difference at least 2 between parts, exactly k parts of the second
color all distinct, and at most k parts of the third color. Then

u(n, k) = v(n, k).

In §2, we will provide a new proof of Theorem 2 using weighted partitions. We also
give a new proof of Theorem 3, but for this we need to reformulate it as the following
weighted partition theorem:

2



Theorem 3*: Let D3(n, k) denote the set of partitions

π : b1 + b2 + · · ·+ bk, with σ(π) = n,

with difference ≥ 3 between parts, and with smallest part ≥ 2. Let bk+1 = −1. Define the
weight w(π) as follows:

(10) w(π) =
k∏
i=1

(
bi − bi+1 − 1

2

)
.

Then

(11)
∑

π∈D3(n,k)

w(π) = u(n, k) = v(n, k).

In §3 we prove the first equality in (11) and also the equality that the sum of the weights
in (11) equals v(n, k). Thus the proof of Theorem 3* in Section 3 is a new combinatorial
proof of Theorem 3.

Guided by the combinatorial arguments in the proof of Theorem 3*, we state and
prove a new Schmidt type theorem and its weighted partition version (Theorem 4) in §4.
The q-hypergeometric version of Theorem 4 has an integresting history going back to the
letter on January 1920 that Ramanujan wrote to Hardy (see [4], p. 220) announcing his
discovery of the mock-theta functions.

Finally in §5, we allude to the work of Bowman [5] and Eichhorn [6], related to our
initial research on weighted partition identities. But these weighted partition versions of
the Schmidt type theorems in this paper, are different from the partitions with number in
their gaps considered by Bowman and Eichhorn.

§1: Equivalence of Theorems 1 and 1*

Let S(n) denote the number of partitions

(12) ψ : a1 + a2 + a3 + · · · ,

such that

(13) a1 > a2 > a3 · · ·

and

(14) a1 + a3 + a5 + · · · = n.

First we show that

(15)
∑

ρ∈R,σ(ρ)=n

w(ρ) = S(n),
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with R as in Theorem 1*, and w(ρ) as in (1). After that, we will recall the combinatorial
proof in [1] that

(16)
∑

ρ∈R,σ(ρ)=n

w(ρ) = p(n).

That will establish that Theorem 1 and 1* are equivalent, and yield a combinatorial proof
of the theorems as well.

First note that the inequalities in (13) imply that a1, a3, a5 · · · are integers with dif-
ference at least 2 between them. So consider a partition ρ ∈ R with σ(ρ) = n, namely

ρ : b1 + b2 + b3 · · ·+ bk = n,

with bk+1 = −1, and make the following identification:

b1 = a1, b2 = a3, b3 = a5, · · · .

In order to get all partitions enumerated by S(n) given by

a1 + a3 + a5 + · · ·+ a2k−1 = b1 + b2 + b3 + · · ·+ bk = n,

we need to insert a2 in the open interval (b1, b2), a4 in the open interval (b2, b3), and so
on. The number of choices for a2 is b1 − b2 − 1, for a4 is b2 − b3 − 1, · · · , and for a2k−2 is
bk−1− bk−1. We could have a part a2k or not. If there is no part a2k in ψ, we set a2k = 0.
If there is a part a2k ≥ 1 in ψ, then the number of choices for this is bk − 1. So together
with the possible value a2k = 0, the number of choices for a2k is

bk = bk − bk+1 − 1,

because bk+1 = −1. Now the choices of the a2, a4, · · · are independent of each other. So
each ρ ∈ R with σ(ρ) = n spawns w(ρ) partitions of the type enumerated by S(n), where
w(ρ) is the product as in (1). So if we sum these weights w(ρ) as in (15), we will get S(n).
This proves (15).

Now we recall the combinatorial proof of (16) in [1].
Given an unrestricted partition π enumerated by p(n), consider its Ferrers graph. In

the Ferrers graph, count nodes along the hooks of the graph. This yields a partition of n
with difference ≥ 2 between the parts. Call this partition φ(π) = ρ. The mapping

φ : π → φ(π) = ρ

is a surjection from the set of unrestricted partitions of n to the set of Rogers-Ramanujan
partitions of n. The number of parts of ρ is the number of nodes in the descending diagonal
of the Durfee square of π.

In order to realize that this map is a surjection, we start with a Rogers-Ramanujan
partition ρ : b1 + b2 + · · · + bk into k parts. Next draw a k × k Durfee square. Then
the portion πr to the right of the Durfee square can be completed in such a way that the
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hook lengths of the partition π whose Ferrers graph is the Durfee square together with
the portion πr, are precisely b1, b2, · · · , bk. So clearly the map φ is a surjection. At this
point we note that the π we constructed comprising only of the Durfee square and πr,
has no nodes below the Durfee square. We call a partition π whose Ferrers graph has
no nodes below the Durfee square as a primary partition. Thus while the map φ is a
surjection from the unrestricted partitions of n to the Rogers-Ramanujan partitions of n,
it is a bijection between the primary partitions of n and the Rogers-Ramanujan partitions
of n. So to prove (16), all we need to do is to show that each primary partition π of n,
spawns w(ρ) partitions enumerated by p(n), where ρ = φ(π). This is established by the
sliding operation as in [1] that we described next.

Given the Ferrers graph of a primary partition with a k × k Durfee square, the a
count of the number of nodes along its hooks yields a Rogers-Ramanujan partition ρ :
b1 + b2 + · · · + bk, namely a partition with difference at least 2 between parts. Let the
portion to the right of the Durfee square be denoted by πr. Consider any column of πr.
By a sliding operation, we mean the movement of a column of πr and the placement of
this column as a row below the Durfee square. The following are invariant under a sliding
operation:

(i) The size of the Durfee square.
(ii) The total number of nodes, namely the integer being partitioned.
(iii) The sizes of the hook lengths, which will be b1, b2, · · · , bk. Thus the partition ρ

obtained by counting nodes along hooks remains unchanged.
Next note that given two consecutive parts bi and bi+1, for 1 ≤ i ≤ k−1 in ρ counted as

hook lengths of the primary partition, the number of columns of length i is bi−bi+1−2 ≥ 0.
Given these columns of length i (of which there could none for a certain i), we could move
0, 1, 2, · · · , bi − bi+1 − 2 columns and place them below the Durfee square. Thus we can
perform bi − bi+1 − 1 sliding operations on the columns of length i. For columns of length
k, we can perform bk = bk− bk+1−1 sliding operations with bk+1 = −1. So a total of w(ρ)
sliding operations can be performed on each such ρ to generate unrestricted partitions of
n, where these Ferrers graphs are now to be read row-wise in the count of p(n). Thus each
ρ spawns w(ρ) partitions enumerated by p(n). Summing these weights as in (16) yields
p(n). That provides a combinatorial proof of Theorem 1* and of Theorem 1 which are
equivalent.

REMARK: Since we noted that φ is a surjection, we now point out that the size of
the inverse image |φ−1(ρ)| = w(ρ), for each Rogers-Ramanujan partition ρ.

§2: Proof of Theorem 2 using weighted partitions

Let s(n) be as in Theorem 2. Since the ai form a non-increasing sequence, a1 +
a3 + a5 + · · · is an ordinary partition of n into non-increasing parts. We now consider
π : b1 + b2 + b3 + · · · + bk = n, a partition of n and set bk+1 = 0. We make the following
identifications:

(17) a1 = b1, a3 = b2, · · · , a2k−1 = bk ≥ 1.

We can choose a2 to be any integer in the closed interval [b1, b2]. So the number of choices
for a2 is b1 − b2 + 1. Similarly, the number of choices for a4 is b2 − b3 + 1, · · · , and the
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number of choices for a2k−2 is bk−1 − bk + 1. Finally, with regard to a2k, it may be a part
of a partition counted by s(n) if it is ≥ 1, or not, in which case we can put a2k = 0. If
a2k ≥ 1, then it must be ≤ bk. So the number of choices for a2k including the value 0 is
bk + 1 = bk − bk+1 + 1. Thus each partition π of n spawns

(18) w1(π) =
k∏
i=1

(bi − bi+1 + 1)

partitions enumerated by s(n), and all partitions enumerated by s(n) can be obtained in
this fashion from the partitions of n. Thus we have

(19)
∑

π,σ(π)=n

w1(π) = s(n).

Next we connect p(n) with p2(n) through a weighted identity.
Given a partition π : b1 + b2 + · · ·+ bk = n, rewrite it as

(20) b∗1f1 + b∗2f2 + · · ·+ b∗νfν = n,

where the b∗j are strictly decreasing positive integers, and each b∗j occurs with frequency
fj ≥ 1. Now let red and blue be two colors on the positive integers with the convention
that blue>red for any given integer n. Given b∗j occurring fj times, we can color these b∗j
as follows: either all have color red, or the first has color blue followed by the rest in color
red, or the first two are in color blue followed by the rest in color red, · · · , or all in color
blue. So the number of ways to color these b∗j in two colors is fj + 1. Thus the number of
ways to two-color the given partition π is

(21) w2(π) =

ν∏
j=1

(fj + 1).

Thus each partition π of n spawns w2(π) partitions enumerated by p2(n), and all partitions
counted by p2(n) can be obtained in this way. This yields the weighted partition identity

(22)
∑

π,σ(π)=n

w2(π) = p2(n).

The equality s(n) = p2(n) will follow from (19) and (22) if we show

(23)
∑

π,σ(π)=n

w1(π) =
∑

π,σ(π)=n

w2(π).

We prove (23) by establishing that

(24) w1(π) = w2(π∗),
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where π∗ is the conjugate of π given by the Ferrers graph of π.
Consider a partition π : b1 + b2 + · · · + bk = n and its Ferrers graph. Rewrite this

as b∗1f1 + b∗2f2 + · · · + b∗νfν = n. So in the Ferrers graph of the partition π, there are
b∗1 − b∗2 columns of length f1, b∗2 − b∗3 columns of length f1 + f2, b∗3 − b∗4 columns of length
f1 + f2 + f3, and so on. Think of f1, f1 + f2, f1 + f2 + f3, · · · as the distinct parts of π∗

occurring with frequency b∗1 − b∗2, b∗2 − b∗3, · · · . Thus the weight w2(π∗) as per (21) would
be

(25) w2(π∗) =

ν∏
i=1

(b∗j − b∗j+1 + 1) =

k∏
i=1

(bi − bi+1 + 1) = w(π),

because for the products in (25), when bi = bi+1, that is when a part repeats, we trivially
have b1 − bi+1 + 1 = 1 as the factor! So only distinct values of the bi, namely the b∗j
contribute to the weight. Thus from (25) we see that (24) holds and hence (23). This
completes the combinatorial proof of Theorem 2.

§3: Proof of Theorem 3 via weighted partitions

We have reformulated Theorem 3 as Theorem 3*. We begin by establishing the first
equality in Theorem 3*.

Since the parts in the partition in (8) are strictly decreasing, it follows that the parts
for the partition of n given by

a1 + a4 + a7 + · · ·+ a3k−2 = n

have difference at least 3 between parts, and a3k−2 ≥ 2. So we consider the set D3(n, k)
of partitions

π : b1 + b2 + · · ·+ bk = n

of n into parts that differ by ≥ 3 and with smallest part bk ≥ 2. We make the following
identifications:

b1 = a1, b2 = a4, b3 = a7, · · · , bk = a3k−2.

Now (7) tells us that we need to choose two distinct integers a2, and a3 in the open
interval (a1, a4) = (b1, b2). So the number of choices for the pair a2, a3 is

(
b1−b2−1

2

)
. More

generally, for 1 ≤ i ≤ k − 1, the number of choices for a3i−1, a3i in the open interval
(bi, bi+1) is

(
bi−bi+1−1

2

)
. Finally, the number of choices for a3k−1, a3k, in the half-open

interval (bk, 0] is
(
bk
2

)
=
(
bk−bk+1−1

2

)
, because bk+1 = −1. So each partition π ∈ D3(n, k)

generates w(π) partitions enumerated by u(n, k), with w(π) as in (10). Thus summing
these weights w(π) over all π ∈ D3(n, k) yields u(n, k) which proves the first equality in
(11).

The proof that the sum of the weights in (11) equals v(n, k) is more complicated, and
we provide this now.

We think of each partition counted by v(n, k) as a triple (vector)-partition (π2, π1, π0),
where π2 is a partition into exactly k parts that differ by ≥ 2, π1 is a partition into exactly
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k parts that differ by ≥ 1 (namely, distinct parts), and π0 is a partition into at most k
parts. Note that π0 is an ordinary partition and so the gaps between its parts is ≥ 0.

Observe that the conjugate π∗1 of π1 is a partition where the set of parts is 1, 2, · · · , k,
and these parts may repeat. Likewise, the conjugate π∗2 of π2, is a partition where the
set of parts is 1, 2, · · · , k, where each part with the possible exception of k occurs at least
twice, but k has to occur at least once. Finally, the conjugate π∗0 of π0 is a partition into
parts ≤ k.

Consider now a partition π ∈ D3(n, k), and its Ferrers graph. Let π : b1+b2+· · ·+bk =
n. For 1 ≤ i ≤ k − 1, since bi − bi+1 ≥ 3, there are at least 3 columns of length i in the
Ferrers graph of π. Since bk ≥ 2, there are at least two columns of length k in the Ferrers
graph of π. For each i satisfying 1 ≤ i ≤ k − 1, extract all columns of length i from the
Ferrers graph, and first place two columns of length i in the Ferrers graph of π2, and one
column of length i in the Ferrers graph of π1. When i = k, the variation is that we first
place one column of length k in the Ferrers graph of π2, and one column of length k in the
Ferrers graph of π1. In any case, for 1 ≤ i ≤ k, we are left with bi − bi+1 − 3 columns of
length i to distribute as columns of π2, π1, and π0 (using bk+1 = −1). If we do not put
any column of length i in the graph of π0, then we need to distribute the bi − bi+1 − 3
columns of length i between the graphs of π2 and π1, giving bi− bi+1− 2 ways of doing so.
If we place exactly one column of length i in the graph of π0, then we have to distribute
bi − bi+1 − 4 columns of length i between the graphs of π2 and π1, giving the number of
choices as bi− bi+1− 3. Next we consider what happens if we place two columns of length
i in π0, and so on. So this argument shows that the number of choices to distribute the
bi − bi+1 − 3 columns of length i between the Ferrers graphs of π2, π1, and π0 is

(26) (bi − bi+1 − 2) + (bi − bi+1 − 3) + (bi − bi+1 − 4) + · · ·+ 1 =

(
bi − bi+1 − 1

2

)
.

Since the distribution of columns of different lengths are “independent” of each other,
we need to take the product of the binomial coefficients in (26), to get the total number
of choices. This product is the weight w(π) in (10). So each partition π ∈ D3(n, k)
spawns w(π) triple-partitions (π2, π1, π0), and all such triple-partitions can be generated
in this fashion. Thus summing the weights w(π) over all π ∈ D3(n, k) yields v(n, k). This
completes the combinatorial proof of Theorem 3*, and hence of Theorem 3.

Remark: Andrews and Paule [3] determined the generating function of u(n, k) and
rewrote it to show it is the same as the generating function of v(n, k). More precisely, they
showed

(27)
∞∑
n=0

u(n, k)qn =
q(3k

2+k)/2

(q)3k
=

qk
2

(q)k
× qk(k+1)/2

(q)k
× 1

(q)k
=

∞∑
n=0

v(n, k)qn.

The main step in their proof is to establish the first equality in (27), from which Theorem
3 follows by the way the generating function of u(n, k) is rewritten.
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§4: Another Schmidt type result

The Schmidt-type partitions considered in Theorems 1, 2, 3, are either partitions into
distinct parts or ordinary (unrestricted) partitions. Two classes of partitions that are
“in-between” unrestricted partitions and partitions into distinct parts are partitions

(28) α : a1 + a2 + a3 · · · with a1 > a2 ≥ a3 > a4 ≥ a5 · · · ,

and

(29) β : b1 + b2 + b3 · · · with b1 ≥ b2 > b3 ≥ b4 > b5 · · · .

The generating functions of these two classes of partitions have nice series representations
which then equal infinite products involving residue classes mod 20. More precisely, we
have two beautiful identities:

(30) φ0(q) :=
∞∑
n=0

qn
2

(q)2n
=

∏
j>0,j≡±1,±3,±4,±5,±7,±9(mod 20)

1

(1− qj)
,

and

(31) φ1(q) :=
∞∑
n=0

qn
2+n

(q)2n+1
=

∏
j>0,j≡±1,±2,±5,±6±8,±9(mod 20)

1

(1− qj)
.

The sum in (30) is the generating function of the partitions α, and the sum in (31) is the
generating function of the partitions β. Identities (30) and (31) are due to L. J. Rogers
[9] and are equivalent to the Rogers-Ramanujan identities in an elementary way. These
are identities (98) and (94) in Slater’s list [11]. Rogers did not emphasize the partition
theoretic significance of (30) and (31), which were first pointed out by Gordon [8] without
proof. That the series in (30) and (31) are the generating functions of partitions of the type
α and β, was established by Hirschhorn [7]. The partition interpretation of the products
in (30) and (31) is obvious.

In view of the loveliness of (30) and (31) and their link with partitions of the type α
and β, we are motivated to ask whether there are any Schmidt-type theorems involving
partitions of the type α and β with odd-indexed parts adding up to n. Such a result for
both α− and β−type partitions is given in Theorem 4.

Theorem 4: Let A(n, k) denote the number of partitions α : a1 + a2 + a3 + · · ·+ a2k,
such that

(32) a1 > a2 ≥ a3 > a4 ≥ a5 · · · ≥ a2k−1 > a2k ≥ 0,

and with

(33) a1 + a3 + a5 + · · · = n.
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Let B(n, k) denote the number of partitions β : b1 + b2 + b3 + · · ·+ b2k, such that

(34) b1 ≥ b2 > b3 ≥ b4 > b5 · · · > b2k−1 ≥ b2k > 0,

and with

(35) b1 + b3 + b5 + · · · = n.

Let D(n, k) denote the set of partitions

(36) δ : d1 + d2 + d3 + · · ·+ dk

of n into distinct parts dj . Put dk+1 = 0. Let the weight w(δ) of the partition δ be defined
as

(37) w(δ) =
k∏
j=0

(dj − dj+1).

Finally, let V (n, k) denote the number of bi-partitions (π1, π0) of n such that π1 is a
partition into exactly k distinct parts, and π0 is an ordinary partition into at most k parts.
Then

(38) A(n, k) = B(n, k) = V (n, k) =
∑

δ∈D(n,k)

w(δ).

Proof: The weighted sum in (38) is the most fundamental of the four quantities there.
More precisely, we will first show that the weighted sum equals A(n, k). The proof that
the weighted sum equals B(n, k) is similar. Thus the equality A(n, k) = B(n, k) follows;
this equality is somewhat surprising because these two partition functions are defined by
different (but similar) set of innequalities. Finally we will show that the weighted sum
equals V (n, k). For convenience, let us denote the weighted sum in (38) by

∑
(δ).

Proof that A(n, k) =
∑

(δ): Begin by observing that the inequalities in (32) imply that
a1 + a3 + · · · + a2k−1 is a partition into k distinct parts. Now consider a partition δ into
k distinct parts as in (36). We make the identifications a1 = d1, a3 = d2, · · · , a2k−1 = dk.
To get a partition α enumerated by A(n, k), we need to insert a2 in the half-open interval
(a1, a3] = (d1, d2]. The number of choices for a2 is d1 − d2. Similarly, the number of
choices for a4 is d2 − d3, · · · , and the number of choices for a2k−2 is dk−1 − dk. Finally,
the number of choices for a2k is dk = dk − dk+1, because dk+1 = 0. So to get the total
number of partitions enumerated by A(n, k) generated by a given δ ∈ D(n, k), we need to
take the product of the di − di+1 for 1 ≤ i ≤ k, and this yields the weight w(δ) in (37).
Thus each δ ∈ D(n, k), spawns w(δ) partitions generated by A(n, k), and all partitions
enumerated by A(n, k) can be obtained by this insertion process. Thus summing w(δ)
over all δ ∈ D(n, k), we see that A(n, k) =

∑
(δ).
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Proof that B(n, k) =
∑

(δ) and A(n, k) = B(n, k): The proof is very similar. Here
given δ as in (36), we make the identifications b1 = d1, b3 = d2, · · · , b2k−1 = dk. Here the
b2 is an integer in the half-open interval [b1, b3) = [d1, d2), and so the number of choices
for b2 is again d1−d2. Similarly, the number of choices of a2i is bi− bi+1 for 1 ≤ i ≤ k− 1.
Finally a2k is to be chosen from the half-open interval [dk, 0), and the number of choices is
again dk = dk − dk+1. Then the above arguments will show that B(n, k) =

∑
(δ). Clearly

A(n, k) = B(n, k) follows from this.

Proof that V (n, k) =
∑

(δ): Consider the Ferrers graphs of the partitions π1 and π0
in the bi-partitions enumerated by V (n, k). The conjugate partition π∗1 of π1 is a partition
for which the set of parts is 1, 2, · · · , k. Similarly, the conjugate π∗0 of π0 is a partition into
parts ≤ k in size.

Now consider a partition δ ∈ D(n, k), and given by (36). The Ferrers graph of δ,
consists precisely of di − di+1 columns of length i, for 1 ≤ i ≤ k, using the definition
dk+1 = 0. For each i, we take out all the di − di+1 columns of length i from δ, and
distribute them as columns of length i in π1 and π0. First we place one column of length
i in the Ferrers graph of π1. So we are left with di − di+1 − 1 columns of lenght i to
be distributed between the graphs of π1 and π0. The number of choices of doing this is
di − di+1. Since the choices for the different i are independent, we multiply the di − di+1

for 1 ≤ i ≤ k, and get the weight w(δ). Thus each δ ∈ D(n, k) spawns w(δ) bi-partitions
enumerated by V (n, k). Thus summing these weights over all δ ∈ D(n, k) yields V (n, k).
This proves that V (n, k) =

∑
(δ). This completes the proof of Theorem 4.

The Generating function: The advantage of introducing V (n, k) in Theorem 4 is
that its generating function can be written down immediately, namely

(39)
∞∑
n=0

V (n, k)qn =
qk(k+1)/2

(q)k
× 1

(q)k
=
qk(k+1)/2

(q)2k
.

Thus

(40) f(z; q) :=

∞∑
k=0

∞∑
n=0

zkV (n, k) =

∞∑
k=0

zkqk(k+1)/2

(q)2k
.

I asked George Andrews whether the infinite sum in (40) has been investigated and whether
there is something of special interest about it. He then responded saying that it has a very
interesting history which I now briefly describe.

As is well known, in his last letter to Hardy dated 20 Jan, 1920, Ramanujan commu-
nicated his discovery of the mock-theta functions which he classified into orders 3, 5 and 7.
In that letter he provided an example of a function naturally defined by a q-series, which
is NOT a mock-theta function. The example he gave was the function given by the series
in (40) with z = 1 (see [4], p. 220). Typically, Ramanujan never mentioned the partition
or combinatorial interpretation of his identities, and that was the case with (40) as well.
Even though f(1; q) is not a mock-theta function, Ramanujan indicated its asymptotic
behavior as q → 1−, but did not provide a proof.

In his celebrated Retiring Presidential Address [13] titled “The Final Problem - an
account of the mock-theta functions”, G. N. Watson analyzed Ramanujan’s mock-theta

11



functions of order 3 in detail. But in [11], he also discussed the asymptotic behavior of
f(1, q), but heuristically. In doing so, he wrote f(1, q) as follows:

f(1, q) =
1

(q)∞

∞∑
k=0

qk(k+1)/2

(q)k
(qk+1)∞

(41) =
1

(q)∞

∞∑
k=0

qk(k+1)/2

(q)k

∞∑
m=0

(−1)mqmk+(m(m+1)/2)

(q)m
.

Now use the relation

(42)
k(k + 1)

2
+
m(m+ 1)

2
+mk =

(m+ k)(m+ k + 1)

2
.

If we set n = m+ k, and rewrite (41) using (42), we get

(43) f(1, q) =
1

(q)∞

∞∑
n=0

qn(n+1)/2

(q)n

n∑
m=0

(−1)m
[
n
m

]
q

.

At this stage, use the identity

(44)
n∑

m=0

(−1)m
[
n
m

]
q

= 0, if n is odd, and = (q; q2)`, if n = 2` is even,

to rewrite the expression in (43) as

(44) f(1, q) =
1

(q)∞

∞∑
n=0

q2n
2+n

(q2; q2)n
.

The infinite sum in (44) is the generating function of partitions in which the largest part
is odd, all integers not exceeding the largest part occur as parts, and only the even parts
repeat. Watson did not consider the partition interpretation of f(1, q). Thus Theorem 4
is new.

§5: Related work

In 1996, Bowman [5] considered “partitions with numbers in their gaps”. That is,
given a partition π, he would insert numbers in-between the parts of π, but in doing
so, the new expression π+ is not necessarily a partition, but a restricted composition.
Starting from certain classes of partitions π, he considered the number of such π+ whose
parts would add up to n. This is different from the Schmidt-type theorems, where only the
sum of the parts of the sub-partition π is n. Bowman’s first result is that if one starts with
Rogers-Ramanujan partitions π : b1 +b2 + · · ·+bk, set b0 =∞, bk+1 = −1 (my convention,
not his), and create π+ by inserting at most bi − bi+1 − 2 ones between bi and bi+1, for
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1 ≤ i ≤ k, permitting an arbitrary number of ones before b1, then the number of such
partitions π+ of n equals p(n), the number of unrestricted partitions of n. He has other
interesting results of this nature in [5]. In view of my Theorem 1 in [1], which is a weighted
partition identity connecting Rogers-Ramanujan partitions with p(n), I conjectured that
there ought to be links between weighted partition identities and partitions with numbers
in gaps. Eichhorn [6] established such links between certain weighted identies of mine in
[1] and some results of Bowman in [5]. While they appear related, the partitions with
numbers in their gaps are different from Schmidt-type partitions. The principal idea of
this paper has been to view every class of Schmidt-type partition as a class of weighted
partitions, and to use these weights to provide combinatorial proofs of the Schmidt-type
theorems. This view point might lead to new Schmidt-type theorems, such as Theorem 4
of this paper.

Acknowledgements: I was inspired to think of linking weighted partitions with
Schmidt-type partitions upon hearing the lecture of George Andrews on Schmidt-type
theorems via MacMahon’s partition analysis, in the Number Theory Seminar at the Uni-
versity of Florida in January 2022. I thank him for several stimulating discussions and for
drawing my attention to the history related to the q-hypergeometric series (40) going back
to Ramanujan. I also thank Ali Uncu for drawing my attention to his paper [12]. Finally,
I thank the referee for a careful reading of the manuscript and for helpful suggestions.
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