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1. Introduction

One of the most famous mathematical problems was the evaluation of
∞∑

n=1

1
n2

.

The Italian mathematician Pietro Mengoli originally posed this problem in 1644.
The problem was later popularized by the Bernoullis who lived in Basel, Switzer-
land, so this became known as the Basel Problem [3]. Leonhard Euler solved this
brilliantly when he was just 28 years old by showing that the sum in question was
equal to π2/6. Indeed, this was Euler’s first mathematical work, and it brought him
world fame. In solving the Basel Problem, Euler found closed-form evaluations more
generally of

ζ(2k) =
∞∑

n=1

1
n2k

1849
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for all even integers 2k ≥ 2. The value of ζ(2k) is given as a rational multiple of
π2k. More precisely, Euler showed that [6, p. 16]

ζ(2k) =
(−1)k+1B2k(2π)2k

2(2k)!
, (1)

where the Bernoulli numbers Bm are defined by the exponential generating function

x

ex − 1
=

∞∑
m=0

Bm
xm

m!
.

Since Euler’s time, numerous proofs of his formula for ζ(2k) have been given. Our
goal here is to give yet another proof of (1) that involves a new identity for Bernoulli
numbers and a different induction process than used previously. We consider the
Fourier coefficients an(k) and bn(k) of the function that is periodic of period 2π and
is given by f(x) = xk on the interval (−π, π], and we obtain a pair of intertwining
recurrences for these coefficients (see (7) and (8) below). We then apply Parseval’s
theorem to connect these Fourier coefficients with ζ(2k) and then establish (1) by
solving this recurrence. The novelty in our approach is a new identity for Bernoulli
numbers that we obtain and use.

A very recent paper by Navas, Ruiz, and Varona [5] establishes new connections
between the Fourier coefficients of many fundamental sequences of polynomials such
as the Legendre polynomials and the Gegenbauer polynomials by making them
periodic of period 1. In doing so, these authors consider the Fourier coefficients of
xk, but they do not use their ideas to establish Euler’s formula (1). Another paper
by Kuo [4] provides a recurrence for the values of ζ(2k) involving only the values
ζ(2j) for j ≤ k/2 instead of requiring j ≤ k − 1 as we do. Our method is very
different from Kuo’s. Other recent proofs of Euler’s formula appear in [1, 2].

2. Warm Up

For each positive integer k, let an(k) and bn(k) be the nth Fourier coefficients of
the function x �→ xk. That is, a0(k) = 1

2π

∫ π

−π xk dx, an(k) = 1
π

∫ π

−π xk cos(nx) dx,
and bn(k) = 1

π

∫ π

−π xk sin(nx) dx for n, k ≥ 1. Parseval’s identity [7, p. 191] informs
us that

1
π

∫ π

−π

x2k dx = 2a0(k)2 +
∞∑

n=1

(an(k)2 + bn(k)2). (2)

Let us apply (2) in the case k = 1. We easily calculate that a0(1) = an(1) = 0
and bn(1) = 2 (−1)n+1

n for all n ≥ 1. This implies that

2π2

3
=

1
π

∫ π

−π

x2 dx =
∞∑

n=1

bn(1)2 =
∞∑

n=1

4
n2

,

so we obtain Euler’s classic result ζ(2) = π2

6 . In Sec. 4, we use Parseval’s identity
to obtain a new inductive proof of Euler’s famous formula (1).
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3. An Identity for Bernoulli Numbers

Before we proceed, let us recall some well-known properties of Bernoulli numbers
(see [6, Chap. 1]). In Lemma 3.1, we also establish one new identity involving these
numbers.

The first few Bernoulli numbers are B0 = 1, B1 = − 1
2 , and B2 = 1

6 . If m ≥ 3 is
odd, then Bm = 0. The equation

n−1∑
m=0

Bm

(
n

m

)
= 0 (3)

holds for any integer n ≥ 2. If n is odd, then
n∑

m=0

Bm2m

(
n

m

)
= 0. (4)

One can prove (4) by evaluating the Bernoulli polynomial Bn(x) =
∑n

�=0 B�

(
n
�

)
xn−�

at x = 1/2 and using the known identity Bn(x) = (−1)nBn(1 − x).
In what follows, we write

(
n

r1,r2,r3

)
to denote the trinomial coefficient given by

n!
r1!r2!r3!

.

Lemma 3.1. For any positive integer k,∑
i+t≤�k/2�

B2t22t

(
2k + 2

2t, 2i + 1, 2k − 2t − 2i + 1

)
= (k + 1)

(
22k + (−1)k

(
2k

k

))
,

where the sum ranges over all non-negative integers i and t satisfying i+ t ≤ �k/2�.

Proof. The difficulty in evaluating the given sum spawns from its unusual limits of
summation. Therefore, we will first evaluate the sum obtained by allowing i and t to
range over all non-negative integers satisfying i+ t ≤ k. Because

∑k−t
i=0

(
2(k−t)+2

2i+1

)
=

22k−2t+1, we have ∑
i+t≤k

B2t22t

(
2k + 2

2t, 2i + 1, 2k − 2t − 2i + 1

)

=
k∑

t=0

B2t22t

(
2k + 2

2t

) k−t∑
i=0

(
2(k − t) + 2

2i + 1

)

= 22k+1
k∑

t=0

B2t

(
2k + 2

2t

)
.

Since Bm = 0 for all odd m ≥ 3,∑
i+t≤k

B2t22t

(
2k + 2

2t, 2i + 1, 2k − 2t − 2i + 1

)

= 22k+1

(
2k+1∑
�=0

B�

(
2k + 2

�

)
− B1

(
2k + 2

1

))
= 22k+1(k + 1). (5)
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Note that we used (3) along with the fact that B1 = − 1
2 to deduce the last equality

above.
We next compute∑

�k/2�<i+t≤k

B2t22t

(
2k + 2

2t, 2i + 1, 2k − 2t − 2i + 1

)

=
k∑

m=�k/2�+1

(
2k + 2
2m + 1

) m∑
t=0

B2t22t

(
2m + 1

2t

)

=
k∑

m=�k/2�+1

(
2k + 2
2m + 1

)(2m+1∑
�=0

B�2�

(
2m + 1

�

)
− 2B1

(
2m + 1

1

))

=
k∑

m=�k/2�+1

(
2k + 2
2m + 1

)
(2m + 1),

where we have used (4) to see that
∑2m+1

�=0 B�2�
(
2m+1

�

)
= 0. Therefore,∑

�k/2�<i+t≤k

B2t22t

(
2k + 2

2t, 2i + 1, 2k − 2t − 2i + 1

)

=
k∑

m=�k/2�+1

(2k + 2)
[(

2k

2m

)
+
(

2k

2m − 1

)]

= (k + 1)
k∑

m=�k/2�+1

[(
2k

2m

)
+
(

2k

2k − 2m

)
+
(

2k

2m − 1

)
+
(

2k

2k − 2m + 1

)]

= (k + 1)
(

22k − (−1)k

(
2k

k

))
. (6)

Lemma 3.1 now follows if we subtract (6) from (5).

4. The Formula for ζ(2k)

To begin this section, let us use integration by parts to see that for any n ≥ 1 and
k ≥ 2,

an(k) =
1
π

∫ π

−π

xk cos(nx) dx = −k

n

1
π

∫ π

−π

xk−1 sin(nx) dx = −k

n
bn(k − 1). (7)

Similarly, if k is odd, then

bn(k) =
1
π

∫ π

−π

xk sin(nx) dx = 2
(−1)n+1πk−1

n
+

k

n
an(k − 1). (8)

Now, it is clear from the definitions of an(k) and bn(k) that an(k) = 0 whenever k

is odd and bn(k) = 0 whenever k is even. Hence, an(k)2 + bn(k)2 is actually equal
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to (an(k) + bn(k))2. If we appeal to (7) and (8) recursively and use the fact that
bn(1) = 2 (−1)n+1

n , then a simple inductive argument shows that when n, k ≥ 1,

an(k) + bn(k) =
� k−1

2 �∑
�=0

cn(k, �)
π2�

nk−2�
, (9)

where we define

cn(k, �) =




2k!
(2� + 1)!

(−1)�k/2�+�+n+1, if 0 ≤ � ≤
⌊

k − 1
2

⌋
;

0, otherwise.

(10)

Gathering (2), (9), and (10) together yields

2
π2k

2k + 1
− 2a0(k)2 =

1
π

∫ π

−π

x2k dx − 2a0(k)2 =
∞∑

n=1


� k−1

2 �∑
�=0

cn(k, �)
π2�

nk−2�




2

=
∞∑

n=1

2� k−1
2 �∑

j=0

r(k, j)
π2j

n2k−2j
=

2� k−1
2 �∑

j=0

r(k, j)π2jζ(2k − 2j), (11)

where

r(k, j) =
j∑

i=0

cn(k, i)cn(k, j − i) =
min(� k−1

2 �,j)∑
i=max(0,j−� k−1

2 �)
cn(k, i)cn(k, j − i)

=
min(� k−1

2 �,j)∑
i=max(0,j−� k−1

2 �)

2k!
(2i + 1)!

(−1)�k/2�+i+n+1 2k!
(2j − 2i + 1)!

(−1)�k/2�+j−i+n+1

=
4(−1)jk!2

(2j + 2)!

min(� k−1
2 �,j)∑

i=max(0,j−� k−1
2 �)

(
2j + 2
2i + 1

)
. (12)

Let µj(k)=
∑min(� k−1

2 �,j)
i=max(0,j−� k−1

2 s�)
(
2j+2
2i+1

)
. If j ≤�k−1

2 �, then µj(k)=
∑j

i=0

(
2j+2
2i+1

)
= 22j+1. If �k−1

2 � < j ≤ k − 1, then

µj(k) = 22j+1 −
j−� k−1

2 �−1∑
i=0

(
2j + 2
2i + 1

)
−

j∑
i=� k−1

2 �+1

(
2j + 2
2i + 1

)

= 22j+1 − 2
j−� k−1

2 �−1∑
i=0

(
2j + 2
2i + 1

)
.
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Assume inductively that we have proven (1) when k is replaced by any smaller
positive integer. Using (11), (12), and this inductive hypothesis, we find that

2
π2k

2k + 1
− 2a0(k)2

= r(k, 0)ζ(2k) +
2� k−1

2 �∑
j=1

4(−1)jk!2

(2j + 2)!
π2jζ(2k − 2j)µj(k)

= 4k!2ζ(2k) +
2� k−1

2 �∑
j=1

4(−1)jk!2

(2j + 2)!
π2j (−1)k−j+1B2k−2j(2π)2k−2j

2(2k − 2j)!
µj(k)

= 4k!2ζ(2k) + 22k+2(−1)k+1π2kk!2
k−1∑
j=1

B2k−2jµj(k)
22j+1(2j + 2)!(2k − 2j)!

(changing the limits of summation in the last line above is valid because µk−1(k) = 0
when k is even). Consequently,

2(2k)!ζ(2k)
(2π)2k

=
(

2−2k

2k + 1
− a0(k)2

(2π)2k

)(
2k

k

)
− (−1)k+12(2k)!

×
k−1∑
j=1

B2k−2jµj(k)
22j+1(2j + 2)!(2k − 2j)!

=
(

2−2k

2k + 1
− a0(k)2

(2π)2k

)(
2k

k

)
+ (−1)k2(2k)!

k−1∑
j=1

B2k−2j

(2j + 2)!(2k − 2j)!

− (−1)k2(2k)!
k−1∑

j=� k−1
2 �+1

B2k−2j

j−� k−1
2 �−1∑

i=0

(
2j + 2
2i + 1

)
22j(2j + 2)!(2k − 2j)!

. (13)

Invoking the identity (3), we may write

2(2k)!
k−1∑
j=1

B2k−2j

(2j + 2)!(2k − 2j)!
=

2
(2k + 1)(2k + 2)

k−1∑
m=1

B2m

(
2k + 2

2m

)

=
2

(2k + 1)(2k + 2)

(
k − B2k

(
2k + 2

2k

))

=
2k

(2k + 1)(2k + 2)
− B2k. (14)
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Furthermore, we may apply Lemma 3.1 to see that

2(2k)!
k−1∑

j=� k−1
2 �+1

B2k−2j

j−� k−1
2 �−1∑

i=0

(
2j + 2
2i + 1

)

22j(2j + 2)!(2k − 2j)!

= 2
�k/2�∑
t=1

B2t

�k/2�−t∑
i=0

(
2k − 2t + 2

2i + 1

)

22k−2t(2k + 1)(2k + 2)

(
2k + 2

2t

)

=
21−2k

(2k + 1)(2k + 2)


 ∑

i+t≤�k/2�
B2t22t

(
2k + 2

2t, 2i + 1, 2k − 2t − 2i + 1

)

−
�k/2�∑
i=0

(
2k + 2
2i + 1

) =
21−2k

(2k + 1)(2k + 2)

[
(k + 1)

(
22k + (−1)k

(
2k

k

))

−
(

22k +
(

2k + 1
k

)
ek

)]
, (15)

where ek = 0 if k is odd and ek = 1 if k is even.
If k is odd, then (13), (14), and (15) combine to show that 2(2k)!ζ(2k)

(2π)2k is equal to

21−2k

(2k + 1)(2k + 2)

[
(k + 1)

(
2k

k

)
− k22k + (k + 1)

(
22k −

(
2k

k

))
− 22k

]
+ B2k,

which simplifies to B2k. This yields (1) when k is odd. If k is even, a0(k)2 = π2k

(k+1)2 .
Hence, we may again invoke (13)–(15) when k is even to find that

2(2k)!ζ(2k)
(2π)2k

=
(

2−2k

2k + 1
− a0(k)2

(2π)2k

)(
2k

k

)
+

2k

(2k + 1)(2k + 2)
− B2k

− 21−2k

(2k + 1)(2k + 2)

[
(k + 1)

(
22k +

(
2k

k

))
−
(

22k +
(

2k + 1
k

))]

=
21−2k

(2k + 1)(2k + 2)

[
k2

k + 1

(
2k

k

)
+ k22k − (k + 1)

(
22k +

(
2k

k

))

+
(

22k +
(

2k + 1
k

))]
− B2k

=
21−2k

(2k + 1)(2k + 2)

[
k2

k + 1

(
2k

k

)
− (k + 1)

(
2k

k

)
+

2k + 1
k + 1

(
2k

k

)]
− B2k

= (−1)k+1B2k.

This proves (1) when k is even, completing the induction.
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