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Abstract. Using Parseval’s identity for the Fourier coefficients of xk, we provide a new

proof that ζ(2k) =
(−1)k+1B2k(2π)2k

2(2k)!
.

1. Introduction

One of the most famous mathematical problems was the evaluation of
∞∑
n=1

1

n2
.

The Italian mathematician Pietro Mengoli originally posed this problem in 1644. The prob-
lem was later popularized by the Bernoullis who lived in Basel, Switzerland, so this became
known as the Basel Problem [3]. Leonhard Euler solved this brilliantly when he was just
twenty-eight years old by showing that the sum in question was equal to π2/6. Indeed, this
was Euler’s first mathematical work, and it brought him world fame. In solving the Basel
Problem, Euler found closed-form evaluations more generally of

ζ(2k) =
∞∑
n=1

1

n2k

for all even integers 2k ≥ 2. The value of ζ(2k) is given as a rational multiple of π2k. More
precisely, Euler showed that [6, Page 16]

(1) ζ(2k) =
(−1)k+1B2k(2π)2k

2(2k)!
,

where the Bernoulli numbers Bm are defined by the exponential generating function

x

ex − 1
=

∞∑
m=0

Bm
xm

m!
.

Since Euler’s time, numerous proofs of his formula for ζ(2k) have been given. Our goal
here is to give yet another proof of (1) that involves a new identity for Bernoulli numbers
and a different induction process than used previously. We consider the Fourier coefficients
an(k) and bn(k) of the function that is periodic of period 2π and is given by f(x) = xk on the
interval (−π, π], and we obtain a pair of intertwining recurrences for these coefficients (see
(7) and (8) below). We then apply Parseval’s theorem to connect these Fourier coefficients
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with ζ(2k) and then establish (1) by solving this recurrence. The novelty in our approach is
a new identity for Bernoulli numbers that we obtain and use.

A very recent paper by Navas, Ruiz, and Varona [5] establishes new connections between
the Fourier coefficients of many fundamental sequences of polynomials such as the Legendre
polynomials and the Gegenbauer polynomials by making them periodic of period 1. In doing
so, these authors consider the Fourier coefficients of xk, but they do not use their ideas to
establish Euler’s formula (1). Another paper by Kuo [4] provides a recurrence for the values
of ζ(2k) involving only the values ζ(2j) for j ≤ k/2 instead of requiring j ≤ k − 1 as we do.
Our method is very different from Kuo’s. Other recent proofs of Euler’s formula appear in
[1] and [2].

2. Warm Up

For each positive integer k, let an(k) and bn(k) be the nth Fourier coefficients of the

function x 7→ xk. That is, a0(k) =
1

2π

∫ π

−π
xk dx, an(k) =

1

π

∫ π

−π
xk cos(nx) dx, and bn(k) =

1

π

∫ π

−π
xk sin(nx) dx for n, k ≥ 1. Parseval’s identity [7, page 191] informs us that

(2)
1

π

∫ π

−π
x2k dx = 2a0(k)2 +

∞∑
n=1

(an(k)2 + bn(k)2).

Let us apply (2) in the case k = 1. We easily calculate that a0(1) = an(1) = 0 and

bn(1) = 2
(−1)n+1

n
for all n ≥ 1. This implies that

2π2

3
=

1

π

∫ π

−π
x2 dx =

∞∑
n=1

bn(1)2 =
∞∑
n=1

4

n2
,

so we obtain Euler’s classic result ζ(2) =
π2

6
. In Section 4, we use Parseval’s identity to

obtain a new inductive proof of Euler’s famous formula (1).

3. An Identity for Bernoulli Numbers

Before we proceed, let us recall some well-known properties of Bernoulli numbers (see [6,
Chapter 1]). In Lemma 3.1, we also establish one new identity involving these numbers.

The first few Bernoulli numbers are B0 = 1, B1 = −1
2
, and B2 = 1

6
. If m ≥ 3 is odd, then

Bm = 0. The equation

(3)
n−1∑
m=0

Bm

(
n

m

)
= 0
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holds for any integer n ≥ 2. If n is odd, then

(4)
n∑

m=0

Bm2m
(
n

m

)
= 0.

One can prove (4) by evaluating the Bernoulli polynomial Bn(x) =
∑n

`=0B`

(
n
`

)
xn−` at x =

1/2 and using the known identity Bn(x) = (−1)nBn(1− x).

In what follows, we write
(

n
r1,r2,r3

)
to denote the trinomial coefficient given by

n!

r1!r2!r3!
.

Lemma 3.1. For any positive integer k,∑
i+t≤bk/2c

B2t2
2t
(

2k+2
2t,2i+1,2k−2t−2i+1

)
= (k + 1)

(
22k + (−1)k

(
2k
k

))
,

where the sum ranges over all nonnegative integers i and t satisfying i+ t ≤ bk/2c.

Proof. The difficulty in evaluating the given sum spawns from its unusual limits of summa-
tion. Therefore, we will first evaluate the sum obtained by allowing i and t to range over all
nonnegative integers satisfying i+ t ≤ k. Because

∑k−t
i=0

(
2(k−t)+2

2i+1

)
= 22k−2t+1, we have∑

i+t≤k

B2t2
2t
(

2k+2
2t,2i+1,2k−2t−2i+1

)
=

k∑
t=0

B2t2
2t
(
2k+2
2t

) k−t∑
i=0

(
2(k−t)+2

2i+1

)
= 22k+1

k∑
t=0

B2t

(
2k+2
2t

)
.

Since Bm = 0 for all odd m ≥ 3,

(5)
∑
i+t≤k

B2t2
2t
(

2k+2
2t,2i+1,2k−2t−2i+1

)
= 22k+1

(
2k+1∑
`=0

B`

(
2k+2
`

)
−B1

(
2k+2
1

))
= 22k+1(k + 1).

Note that we used (3) along with the fact that B1 = −1
2

to deduce the last equality above.

We next compute∑
bk/2c<i+t≤k

B2t2
2t
(

2k+2
2t,2i+1,2k−2t−2i+1

)
=

k∑
m=bk/2c+1

(
2k+2
2m+1

) m∑
t=0

B2t2
2t
(
2m+1
2t

)

=
k∑

m=bk/2c+1

(
2k+2
2m+1

)(2m+1∑
`=0

B`2
`
(
2m+1
`

)
− 2B1

(
2m+1

1

))
=

k∑
m=bk/2c+1

(
2k+2
2m+1

)
(2m+ 1),

where we have used (4) to see that
∑2m+1

`=0 B`2
`
(
2m+1
`

)
= 0. Therefore,∑

bk/2c<i+t≤k

B2t2
2t
(

2k+2
2t,2i+1,2k−2t−2i+1

)
=

k∑
m=bk/2c+1

(2k + 2)
[(

2k
2m

)
+
(

2k
2m−1

)]

(6) = (k+ 1)
k∑

m=bk/2c+1

[(
2k
2m

)
+
(

2k
2k−2m

)
+
(

2k
2m−1

)
+
(

2k
2k−2m+1

)]
= (k+ 1)

(
22k − (−1)k

(
2k
k

))
.

Lemma 3.1 now follows if we subtract (6) from (5). �
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4. The Formula for ζ(2k)

To begin this section, let us use integration by parts to see that for any n ≥ 1 and k ≥ 2,

(7) an(k) =
1

π

∫ π

−π
xk cos(nx) dx = −k

n

1

π

∫ π

−π
xk−1 sin(nx) dx = −k

n
bn(k − 1).

Similarly, if k is odd, then

(8) bn(k) =
1

π

∫ π

−π
xk sin(nx) dx = 2

(−1)n+1πk−1

n
+
k

n
an(k − 1).

Now, it is clear from the definitions of an(k) and bn(k) that an(k) = 0 whenever k is odd and
bn(k) = 0 whenever k is even. Hence, an(k)2 + bn(k)2 is actually equal to (an(k) + bn(k))2. If

we appeal to (7) and (8) recursively and use the fact that bn(1) = 2
(−1)n+1

n
, then a simple

inductive argument shows that when n, k ≥ 1,

(9) an(k) + bn(k) =

b k−1
2 c∑
`=0

cn(k, `)
π2`

nk−2`
,

where we define

(10) cn(k, `) =

{
2k!

(2`+1)!
(−1)bk/2c+`+n+1, if 0 ≤ ` ≤

⌊
k−1
2

⌋
;

0, otherwise.

Gathering (2), (9), and (10) together yields

2
π2k

2k + 1
− 2a0(k)2 =

1

π

∫ π

−π
x2k dx− 2a0(k)2 =

∞∑
n=1

b k−1
2 c∑
`=0

cn(k, `)
π2`

nk−2`


2

(11) =
∞∑
n=1

2b k−1
2 c∑

j=0

r(k, j)
π2j

n2k−2j =

2b k−1
2 c∑

j=0

r(k, j)π2jζ(2k − 2j),

where

r(k, j) =

j∑
i=0

cn(k, i)cn(k, j − i) =

min(b k−1
2 c,j)∑

i=max(0,j−b k−1
2 c)

cn(k, i)cn(k, j − i)

=

min(b k−1
2 c,j)∑

i=max(0,j−b k−1
2 c)

2k!

(2i+ 1)!
(−1)bk/2c+i+n+1 2k!

(2j − 2i+ 1)!
(−1)bk/2c+j−i+n+1

(12) =
4(−1)jk!2

(2j + 2)!

min(b k−1
2 c,j)∑

i=max(0,j−b k−1
2 c)

(
2j + 2

2i+ 1

)
.
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Let µj(k) =

min(b k−1
2 c,j)∑

i=max(0,j−b k−1
2 c)

(
2j + 2

2i+ 1

)
. If j ≤

⌊
k−1
2

⌋
, then µj(k) =

j∑
i=0

(
2j + 2

2i+ 1

)
= 22j+1. If

⌊
k−1
2

⌋
< j ≤ k − 1, then

µj(k) = 22j+1 −
j−b k−1

2 c−1∑
i=0

(
2j + 2

2i+ 1

)
−

j∑
i=b k−1

2 c+1

(
2j + 2

2i+ 1

)
= 22j+1 − 2

j−b k−1
2 c−1∑
i=0

(
2j + 2

2i+ 1

)
.

Assume inductively that we have proven (1) when k is replaced by any smaller positive
integer. Using (11), (12), and this inductive hypothesis, we find that

2
π2k

2k + 1
− 2a0(k)2 = r(k, 0)ζ(2k) +

2b k−1
2 c∑

j=1

4(−1)jk!2

(2j + 2)!
π2jζ(2k − 2j)µj(k)

= 4k!2ζ(2k) +

2b k−1
2 c∑

j=1

4(−1)jk!2

(2j + 2)!
π2j (−1)k−j+1B2k−2j(2π)2k−2j

2(2k − 2j)!
µj(k)

= 4k!2ζ(2k) + 22k+2(−1)k+1π2kk!2
k−1∑
j=1

B2k−2jµj(k)

22j+1(2j + 2)!(2k − 2j)!

(changing the limits of summation in the last line above is valid because µk−1(k) = 0 when
k is even). Consequently,

2(2k)!ζ(2k)

(2π)2k
=

(
2−2k

2k + 1
− a0(k)2

(2π)2k

)(
2k

k

)
− (−1)k+12(2k)!

k−1∑
j=1

B2k−2jµj(k)

22j+1(2j + 2)!(2k − 2j)!

=

(
2−2k

2k + 1
− a0(k)2

(2π)2k

)(
2k

k

)
+ (−1)k2(2k)!

k−1∑
j=1

B2k−2j

(2j + 2)!(2k − 2j)!

(13) −(−1)k2(2k)!
k−1∑

j=b k−1
2 c+1

B2k−2j
∑j−b k−1

2 c−1
i=0

(
2j+2
2i+1

)
22j(2j + 2)!(2k − 2j)!

.

Invoking the identity (3), we may write

2(2k)!
k−1∑
j=1

B2k−2j

(2j + 2)!(2k − 2j)!
=

2

(2k + 1)(2k + 2)

k−1∑
m=1

B2m

(
2k+2
2m

)

(14) =
2

(2k + 1)(2k + 2)

(
k −B2k

(
2k+2
2k

))
=

2k

(2k + 1)(2k + 2)
−B2k.
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Furthermore, we may apply Lemma 3.1 to see that

2(2k)!
k−1∑

j=b k−1
2 c+1

B2k−2j
∑j−b k−1

2 c−1
i=0

(
2j+2
2i+1

)
22j(2j + 2)!(2k − 2j)!

= 2

bk/2c∑
t=1

B2t

∑bk/2c−t
i=0

(
2k−2t+2
2i+1

)
22k−2t(2k + 1)(2k + 2)

(
2k+2
2t

)

=
21−2k

(2k + 1)(2k + 2)

 ∑
i+t≤bk/2c

B2t2
2t
(

2k+2
2t,2i+1,2k−2t−2i+1

)
−
bk/2c∑
i=0

(
2k+2
2i+1

)
(15) =

21−2k

(2k + 1)(2k + 2)

[
(k + 1)

(
22k + (−1)k

(
2k
k

))
−
(
22k +

(
2k+1
k

)
ek
)]
,

where ek = 0 if k is odd and ek = 1 if k is even.

If k is odd, then (13), (14), and (15) combine to show that
2(2k)!ζ(2k)

(2π)2k
is equal to

21−2k

(2k + 1)(2k + 2)

[
(k + 1)

(
2k
k

)
− k22k + (k + 1)

(
22k −

(
2k
k

))
− 22k

]
+B2k,

which simplifies to B2k. This yields (1) when k is odd. If k is even, a0(k)2 =
π2k

(k + 1)2
.

Hence, we may again invoke (13), (14), and (15) when k is even to find that

2(2k)!ζ(2k)

(2π)2k
=

(
2−2k

2k + 1
− a0(k)2

(2π)2k

)(
2k
k

)
+

2k

(2k + 1)(2k + 2)
−B2k

− 21−2k

(2k + 1)(2k + 2)

[
(k + 1)

(
22k +

(
2k
k

))
−
(
22k +

(
2k+1
k

))]
=

21−2k

(2k + 1)(2k + 2)

[
k2

k + 1

(
2k
k

)
+ k22k − (k + 1)

(
22k +

(
2k
k

))
+
(
22k +

(
2k+1
k

))]
−B2k

=
21−2k

(2k + 1)(2k + 2)

[
k2

k + 1

(
2k
k

)
− (k + 1)

(
2k
k

)
+

2k + 1

k + 1

(
2k
k

)]
−B2k = (−1)k+1B2k.

This proves (1) when k is even, completing the induction.
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