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Abstract
We obtain uniform estimates for Nk(x, y), the number of positive integers n up to x
for which ωy(n) = k, where ωy(n) is the number of distinct prime factors of n which
are < y. The motivation for this problem is an observation due to the first author
in 2015 that for certain ranges of y, the asymptotic behavior of Nk(x, y) is different
from the classical situation concerning Nk(x, x) studied by Sathe and Selberg. We
demonstrate this variation of the classical theme; to estimate Nk(x, y) we study the
sum Sz(x, y) = ∑

n≤x z
ωy(n) for Re(z) > 0 by the Buchstab–de Bruijn method. We

also utilize a certain recent result of Tenenbaum to complete our asymptotic analysis.

Keywords Number of small prime factors · Local distribution · Landau’s theorem ·
Selberg’s method · Buchstab iteration · de Bruijn’s method · Difference-differential
equations

Mathematics Subject Classification 11M06 · 11M41 · 11N25 · 11N37 · 11N60

1 Introduction

The function

ωy(n) =
∑

p|n
p<y

1,

where p is a prime number, figures prominently in the proofs of theErdős–Kac theorem
which concerns the global distribution of the number of prime factors. Here we focus
on the “local distribution” of ωy(n), that is, we study the function
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118 K. Alladi, T. Molnar

Nk(x, y) =
∑

n≤x
ωy(n)=k

1

with emphasis on results which are uniform. Throughout we will assume that x, y ≥ 3
to avoid negative values for certain key functions.

The first significant study of ω(n) is due to Hardy and Ramanujan [9] in 1917.
They proved that ω(n) is almost always asymptotically log log n in size by obtaining
a uniform bound for the function Nk(x, x) = Nk(x); they showed that there exist
absolute constants A, B > 0 such that

Nk(x) =
∑

n≤x
ω(n)=k

1 <
Bx(log log x + A)k−1

(k − 1)! log x

for all x ≥ 3 and all integers k ≥ 1.
When α = log(x)/ log(y) > 1, and k is small, the behavior of Nk(x, y) is different

from the classical case of Nk(x) (see Theorems 2, 3, 11, and 12), a phenomenon first
observed by Alladi in 2015. We will supply the analysis necessary to explain this
phenomenon. However, as k approaches log log y, or as y approaches x , the behavior
is similar to the classical situation. We investigate how and when such a transition
takes place.

In preparation for this investigation, we shall study the behavior of the sum

Sz(x, y) =
∑

n≤x

zωy(n), (1)

where z ∈ C. Note that in the special case z = 0, S0(x, y) = �(x, y), the well-known
function counting the number of uncancelled elements in the Sieve of Eratosthenes.
Obtaining asymptotic estimates for Sz(x, y) which are both sharp enough for applica-
tion and uniform in y will require a variety of tools. Besides the elementary techniques
of Sect. 3, we shall also employ analytic methods in Sects. 2, 4, and 5 such as de
Bruijn’s method of utilizing Buchstab iterations and difference-differential equations
[5]. It will be important to note that the ranges for the estimates in these sections
overlap, thereby permitting a result valid in a larger range. More importantly, by com-
paring the estimates in these two ranges, we obtain an asymptotic estimate for a certain
function satisfying a difference-differential equation without going through a saddle
point analysis; this technique was used by Alladi in [3].

Once we have asymptotic estimates for Sz(x, y), we may then study Nk(x, y) by
recognizing that

Nk(x, y) = 1

2π i

∫

γ

Sz(x, y)

zk+1 dz (2)

for a suitable contour γ . The idea of using such a contour integral is due to Selberg
[12] who studied the case y = x . If we let
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The local distribution of the number of small prime… 119

g(s, z) =
∏

p

(

1 + z

ps − 1

) (

1 − 1

ps

)z

then Selberg demonstrated that with r = Re(z)

Sz(x, x) = Sz(x) = g(1, z)

�(z)

x

log1−z x
+ O

(
x

log2−r x

)

uniformly for |z| ≤ R, where �(z) is the Gamma function. Then using the integral in
(2) with γ a circle centered at the origin with radius

ρ = k − 1

log log x
,

Selberg demonstrated that

Nk(x) = x

log x

g
(
1, k−1

log log x

)

�
(
1 + k−1

log log x

)
(log log x)k−1

(k − 1)!
(

1 + O

(
k

(log log x)2

))

(3)

uniformly for k ≤ R log log x , where R is any fixed positive number. This result
improves upon that of Landau (see (7) below) and Sathe in [11]. Our methods leading
to Theorems 10 and 12 show that for certain ranges of k and y

Nk(x, y) � Nk+1(x);

in such a situation, the function Nk(x, y) is of the size of the (k+1)-st Landau function.
The above equation is the precise statement of the phenomenon observed by Alladi in
2015, and our results pertaining to this were established in 2016.

In a fundamental paper Halász [7] studied the local distribution of the general
additive function

ω(n; Q) :=
∑

p|n
p∈Q

1,

where Q is an arbitrary set of prime numbers. He obtained the asymptotic estimate

Nk(x; Q) :=
∑

n≤x
ω(n;Q)=k

1 ∼ xe−Q(x)Q(x)k

k!

when ω(n; Q) ∼ Q(x), where

Q(x) =
∑

p≤x
p∈E

1

p
.
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120 K. Alladi, T. Molnar

(see Elliott [6, vol. 2, pp. 296–301] for a proof). In a recent paper Tenenbaum [15] has
strengthened Halász’s result by extending the range of Halász’ asymptotic formula to

1/κ ≤ k/Q(x) ≤ κ

for any large κ > 0; his results are uniform in that range. In the course of explaining
the phenomenon observed by Alladi, Tenenbaum [14] communicated to us in 2016
that by choosing Q = {p|p < y}, one may use the Selberg–Delange method and other
techniques to obtain sharper error terms than ours in some instances (see [17]). The
emphasis of this paper is to obtain sufficiently sharp and uniform asymptotic estimates
that will demonstrate and explain the phenomenon observed byAlladi, which seems to
have escaped attention.Ourmethods are different from those ofHalász andTenenbaum
and are of intrinsic interest.

Some Notation: We use the standard notation in number theory s = σ + i t for a
complex number s when we discuss analytic functions of s in right half planes. But for
the complex number z occurring in the definition of Sz(x, y), we will put r = Re(z).

Throughout we assume that x, y ≥ 3 so that log log x and log log y are positive.
We use the logarithmic integral defined as

�i(y) =
∫ y

2

dt

log t
.

We let π(y) denote the number of primes up to y. With �i(y) as above, we denote
by E(y) any decreasing function of y that bounds from above the relative error in the
Prime Number Theorem

|π(y) − �i(y)|
�i(y)

< E(y),

with E(y) logR y → 0 as y → ∞, for every R > 0.
Also throughout we put β = x

y and α = log x
log y . Further notation will be introduced

when needed.

2 Asymptotic estimate of Sz(x, y) for small y

Following the method of de Bruijn in [5] we may obtain an estimate for Sz(x, y)
for “small y” using contour integration. The contour integral representation is valid
for any complex z ∈ C and will yield an asymptotic estimate of Sz(x, y) provided
z 	= −p+1, with p a prime number. First note that as zωy(n) is mutiplicative, we have

F(s) :=
∞∑

n=1

zωy(n)

ns
= ζ(s)

∏

p<y

(

1 + z − 1

ps

)

= ζ(s)g(s, y, z),
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The local distribution of the number of small prime… 121

where ζ(s) is the Riemann zeta function and

g(s, y, z) =
∏

p<y

(

1 + z − 1

ps

)

,

so that the function g(s, y, z) is now analytic in both s and z.

Lemma 1 If Re(s) = σ ≥ 1 − 1
log y and |z| ≤ R then there exits a constant C > 0

such that

g(s, y, z) <<R logC|z−1| y.

The proof follows using the methods in [5].
With the estimate of Lemma 1 we may now prove

Theorem 1 Let R > 0 be fixed, |z| ≤ R, and x ≥ y ≥ 3. Then

Sz(x, y) = x
∏

p<y

(

1 + z − 1

p

)

+ O(xe−α logD x) + OR

(
x

logR+2 x

)

with some constant D > 0, and where α = log x
log y .

Proof From the Perron integral formula (see [13, p. 132]) we have the following
representation:

Sz(x, y) =
∑

n≤x

zωy(n)

= 1

2π i

∫ a+iT

a−iT
ζ(s)g(s, y, z)

xs

s
ds

+ O

( ∞∑

n=1

( x

n

)a
(1 + [R])ω(n) min

(

1,
1

T | log(x/n)|
))

, (4)

where a > 1. In (4) we have used the simple upper bound (1 + [R])ω(n) for the
coefficients of the Dirichlet series F(s) when |s| ≤ R.

Following Selberg [12], the sum in (4) is estimated by dividing the range of sum-
mation into three intervals: n < x/2, n > 3x/2, and x/2 ≤ n ≤ 3x/2. Some care
needs to paid in dealing with n very close to x , and this is why we have replaced R
by 1 + [R] in the error term above. This yields

∞∑

n=1

( x

n

)a
(1 + [R])ω(n) min

(

1,
1

T | log(x/n)|
)

<<R
x

logR+2(x)
+ x log2R(x)

T
.
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122 K. Alladi, T. Molnar

By choosing T := e
√

log(x) in the above expression, we obtain

Sz(x, y) − 1

2π i

∫ a+iT

a−iT
ζ(s)g(s, y, z)

xs

s
ds <<R

x

logR+2(x)
. (5)

To evaluate the integral in Eq. (5), we consider the rectangular contour � with
vertices a + iT , b + iT , b − iT , and a − iT with

max

(

1 − 1

log T
, 1 − 1

log y

)

= b < 1 < a = 1 + 1

log x

and T = e
√
log x defined as above. Using Cauchy’s theorem and taking into account

the simple pole of ζ(s) with residue 1 at s = 1, we get the term

x
∏

p<y

(

1 + z − 1

p

)

in the Theorem. Upper bounds for the contribution from the vertical line segments
of � corresponding to σ = b, and horizontal segments of �, yield the O terms in
Theorem 1.

Theorem 1 can of course be used to obtain an effective asymptotic estimate for
Sz(x, y) for certain ranges of y. In fact, if α is large enough to suppress the second
term in Theorem 1 then, provided y → ∞ and z 	= 1 or 1 − p, the main term will
simply be

x
∏

p<y

(

1 + z − 1

p

)

�z
x

log1−z y
.

This can be improved with the following ��
Corollary 1 Let z ∈ C, |z| ≤ R, and let D denote the constant in Theorem 1. If
α ≥ (R + D + 1 + ε) log log x, ε > 0 an arbitrary small fixed constant, then

Sz(x, y) = x
∏

p<y

(

1 + z − 1

p

)

+ O

(
x

logR+1+ε y

)

;

in particular, there exists a positive constant K such that if α ≥ K log log x and z 	= 1,
or 1 − p then

Sz(x, y) ∼ x
∏

p<y

(

1 + z − 1

p

)

.

Following de Bruijn in [5] we may introduce an additional parameter λ > 0 by
replacing 1 − 1

log y with 1 − λ
log y , in defining b. Then carrying out the analysis

of Theorem 1, we may optimize this parameter to achieve an error term which is
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The local distribution of the number of small prime… 123

<< xe−α logα logD(x). We do not require the full strength of this result and so we
settled for the simpler bound in Theorem 1. Theorem 1 and Corollary 1 can also be
obtained using the more elementary technique of convolution sums, as in Hall and
Tenenbaum [8]. Note that if α satisfies the range of Corollary 1, then

y = x1/α ≤ e
log x

K log log x . (6)

This range of y will be crucial for subsequent results.

3 Estimate of Nk(x, y) for very large y

In this section, we will derive estimates for Sz(x, y) when y is very large, by which
we mean that if β = x/y, then β is fixed. It is a classical result due to Landau [10]
(see also Tenenbaum [13, p. 200]) that if k is fixed and β = 1 then

Nk(x) = x(log log x)k−1

(k − 1)! log x
+ O

(
x(log log x)k−2

(k − 2)! log x

)

. (7)

This is implied by (3). We shall see in Theorem 2 that the asymptotic behavior of
Nk(x, y) is quite different from (7) for certain ranges of y.

Lemma 2 For any fixed integer k > 1 and � ≥ 1 we have

∑

p
e1
1 p

e2
2 ...p

ek
k <x

log�(pe11 ...pekk )

pe11 pe22 ...pekk
= log� x(log log x)k−1

(k − 1)!� + O

(
log� x(log log x)k−2

(k − 2)!�
)

.

Proof We may write

∑

p
e1
1 p

e2
2 ...p

ek
k <x

log�(pe11 ...pekk )

pe11 pe22 ...pekk
=

∫ x

2

log�(t)

t
dNk(t),

Lemma 2 follows by using applying integration by parts and using (7). ��

Remarks (i) Even though we have stated Lemma 2 for � ≥ 1 and k ≥ 2 we will use it
in the sequel only for � = 1.
(ii) When k = � = 1 there is the well-known sharper result

∑

pe≤x

log p

pe
= log x + c + O

(
1

log(x)

)

.
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124 K. Alladi, T. Molnar

(iii) The estimate given in Lemma 2 still applies if the summation is over square-free
integers, that is, if � ≥ 1 and k > 1, then

∑

p1...pk<x

log�(p1...pk)

p1...pk
= log� x(log log x)k−1

(k − 1)!� + O

(
log� x(log log x)k−2

(k − 2)!�
)

.

(8)

To establish (8) we follow the proof given above for Lemma 2 except instead of the
integrator Nk(x) we use

N∗
k (x) =

∑

n≤x
�(n)=ω(n)=k

1,

which is the number of square-free integers with precisely k prime factors. The esti-
mates of Lemma 2 and (8) agree because for fixed k

Nk(x) = N∗
k (x) + O

(
x(log log x)k−2

log x(k − 2)!
)

.

(iv) When � = 0, the main term in the asymptotic estimate for the sum in (8) is
(log log x)k/k!, and for this case, Tenenbaum [16] has recently obtained very precise
evaluations.

Let β := x/y. We assume x > β2, so that we can have
√
x < y ≤ x . We begin by

considering Nk(x, y) when k = 0, that is

N0(x, y) =
∑

n≤x
ωy(n)=0

1 =
∑

n≤x
p−(n)≥y>

√
x

1 = �(x, y). (9)

Since y >
√
x then the sum in (9) will be counting integers n ≤ x with all prime

factors >
√
x ; however, the only integers with this property are 1 and the prime

numbers y ≤ p ≤ x . Hence, we have

Lemma 3 If x ≥ y >
√
x then

N0(x, y) = 1 + π(x) − π(y − 1).

From the prime number theorem we may immediately obtain an asymptotic estimate
in the form

N0(x, y) = x

log x
+ O

(
x

log2 x

)

− y

log y
+ O

(
y

log2 y

)

= x

log x
− y

log y
+ O

(
x

log2 x

)

, (10)
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The local distribution of the number of small prime… 125

with obvious improvements being possible. Comparing this with N0(x, x) = 1 (the
corresponding Landau term) we can immediately see that N0(x, y) is much larger
when β > 1.

Next, with y >
√
x , consider Nk(x, y)when k = 1. The numbers which contribute

to this sum will be of the form n = mpe ≤ x with p < y, p−(m) ≥ y >
√
x , and

m ≤ x/pe, hence,

N1(x, y) =
∑

n≤x
ωy(n)=1

1 =
∑

mpe≤x
p<y

p−(m)≥y>
√
x

1 =
∑

pe≤x
p<y

1 +
∑

m≤x/pe
p<y

p−(m)≥y

1,

where the first term corresponds to m = 1 and the second to m > 1; however, since
p−(m) ≥ y >

√
x this forces m = q to be prime. Consequently

N1(x, y) = π(y − 1) + O(
√
y) +

∑

y≤q≤x/pe
p<y

1.

By evaluating the sum on the right in the above expression, we get

Lemma 4 If
√
x < y ≤ x with β = x/y fixed, then

N1(x, y) = x

log y

∑

pe<β

(
1

pe
− 1

β

)

+ x

β log y
+ Oβ

(
x

log2 x

)

.

Remark In Lemma 4, the expression x
β log y corresponds to main term in Landau’s

estimate (7) for k = 1. Note that this term decreases as β increases.
If as x → ∞ we now allow β to become large as well, the estimate in Lemma 4

implies that N1(x, y) ∼ x log logβ
log x , as this term dominates the Landau term of x

β log y .
We can apply the above techniques (and Lemma 2) to analyze the sum Nk(x, y)

for general fixed k and β > 1.

Theorem 2 For arbitrary fixed β := x/y > 1,
√
x < y < x and k ∈ Z, k > 1 fixed,

we have

Nk(x, y) = x

log y

∑

p
e1
1 ...p

ek
k ≤β

(
1

pe11 ...pekk
− 1

β

)

+ x(log log y)k−1

log y(k − 1)!

+ O

(
x

log y

(log log x)k−2

(k − 2)!
)

.
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126 K. Alladi, T. Molnar

Theorem 2 is proved by noting that

Nk(x, y) =
∑

p
e1
1 ...p

ek
k ≤β

e j>0
p j<y

�

(
x

pe11 ...pekk
, y

)

+
∑

β<p
e1
1 ...p

ek
k ≤x

e j>0
p j<y

1,

and utilizing the above lemmas.
When x → ∞, if we now permit β to become arbitrarily large (but keep y >

√
x),

then the first term in Theorem 2 will begin to dominate, which is the phenomenon
noticed in 2015.

The above analysis will permit us to estimate Nk(x, y) for all y ∈ (
√
x, x], provided

k is fixed, because the only fact used in the course of the proof of Theorem 2 is that if
x > x/n ≥ y >

√
x then �(x/n, y) = π(x/n) − π(y − 1). In addition, the sum

∑

p≤β

π

(
x

p

)

∼
∑

p≤β

x

p log(x/p)
= x

log x

∑

p≤β

1

p
(
1 − log p

log x

)

= x

log x

⎛

⎝
∑

p≤β

1

p

⎞

⎠ + O

⎛

⎝ x

log2 x

∑

p≤β

log p

p

⎞

⎠

= x

log x
log logβ + O

(
x

log x

)

.

This analysis can be continued when we have k prime factors as

∑

p1...pk≤β

π

(
x

p1...pk

)

= x

log x

∑

p1...pk≤β

1

p1...pk

+ O

⎛

⎝ x

log2 x

∑

p1...pk

log(p1...pk)

p1...pk
+

∑

p1...pk≤β

x

p1...pk log2(x/p1...pk)

⎞

⎠ ,

so that, with the aid of Lemma 2, we may arrive at the following

Theorem 3 For
√
x < y ≤ x, with β = x/y, we have

Nk(x, y) = x

log x

(log logβ∗)k

k! + x

log x

(log log x)k−1

(k − 1)!
+ O

(
x(log log x)k−2

log x(k − 2)! + x

log x

(log logβ∗)k−1

(k − 1)!
)

,

where β∗ = max(β, 10).
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The local distribution of the number of small prime… 127

We may rewrite Theorem 3 as

Nk(x, y) = w(α)
x

log y

(log logβ∗)k

k! + x

log x

(log log x)k−1

(k − 1)!
+ O

(
x(log log x)k−2

log x (k − 2)! + x

log x

(log logβ∗)k−1

(k − 1)!
)

, (11)

where w(α) = 1
α
for 1 ≤ α < 2.

We note the following interesting consequence of the preceding theorem.

Corollary 2 Let k ∈ Z
+ be fixed and

√
x < y < xe−e(1/ε)(log log x)1−1/k

, where ε → 0,
as x → ∞. Then

Nk(x, y) ∼ w(α)
x(log log β)k

k! log y
.

Proof The corollary follows by comparing the first two terms of Eq. (11), and noting
that for the stated range the first term dominates. ��

It is also possible to show that the results of Corollary 2 hold for arbitrary fixed
α > 2 and k fixed. For y <

√
x , we have for k = 0

N0(x, y) = �(x, y) = w(α)
x

log y
+ O

(
x

log2 y

)

,

where

w(α) =
{

1
α
, for 1 ≤ α ≤ 2
d
dα (αw(α)) = w(α − 1), for α ≥ 2.

This is a well-known result (see [5]) for the number of uncanceled elements in the
sieve of Eratosthenes, and w(α) is known as the Buchstab function.

Let ℘y = ∏
p<y p. When k = 1, we see that

N1(x, y) =
∑

n=mpe≤x
(m,℘y)=1

p<y

1 =
∑

p<y
e≥1

�

(
x

pe
, y

)

=
∑

p<y

�

(
x

p
, y

)

+
∑

p<y
e≥2

�

(
x

pe
, y

)

=
∑

1

+
∑

2

. (12)

123

Author's personal copy



128 K. Alladi, T. Molnar

Clearly,

∑

2

=
∑

pe≤x/y
p<y
e≥2

�

(
x

pe
, y

)

+
∑

pe>x/y
p<y,pe≤x

e≥2

�

(
x

pe
, y

)

. (13)

Using the estimate

�(x, y) << max

(
x

log y
, 1

)

,

we see that (13) is

<<
∑

p<y
pe≤x
e≥2

max

(
x

pe log y
, 1

)

<<
x

log y
+ √

x <<
x

log y
. (14)

Regarding the first sum in (12), we use the fact that for 0 ≤ u ≤ 1

w(α − u) = w(α) + O(u),

because w′(α) is bounded for α > 1 (see either [2] or [5]). Thus

∑

1

=
∑

p<y

x

p

w
(
log x−log p

log y

)

log y
+ O

(
x

log2 y

∑

p<y

1

p

)

= w(α)
x

log y

∑

p<y

1

p
+ O

(
x

log2 y

∑

p<y

log(p)

p

)

= w(α)
x log log y

log y
+ O

(
x

log y

)

. (15)

Using (14) and (15) in (12) we conclude

N1(x, y) = w(α)
x log log y

log y
+ O

(
x

log y

)

.

Similarly, we may also estimate N2(x, y) for fixed α > 2, but this is a bit more
complicated. Note that

N2(x, y) =
∑

n=mp
e1
1 p

e2
2 ≤x

(m,℘y)=1
p1,p2<y

1 =
∑

p1,p2<y

�

(
x

pe11 pe22
, y

)

=
∑

p1,p2<y

�

(
x

p1 p2
, y

)

+
∑

p1,p2<y
e1+e2≥3

�

(
x

pe11 pe22

)

=
∑

3

+
∑

4

. (16)

123

Author's personal copy



The local distribution of the number of small prime… 129

In this case

∑

4

<<
∑

p1,p2<y
x/y≤p

e1
1 p

e2
2 ≤x

e1+e2≥3

max

(
x

pe11 pe22 log y
, 1

)

<<
x log log y

log y
.

With regard to
∑

3, we have

∑

3

=
∑

p1,p2<y1/4

�

(
x

p1 p2
, y

)

+
∑

p1,p2<y
max(p1,p2)>y1/4

�

(
x

p1 p2
, y

)

=
∑

5

+
∑

6

. (17)

Now, the latter sum in (17) is

∑

6

<<
∑

p1,p2<y
one of p1,p2>y1/4

x

p1 p2 log y
+

∑

p1,p2<y
max(p1,p2)>y1/4
x/y<p1 p2<x

1, (18)

and the first sum in (18) may be bounded by

∑

p1,p2<y
one of p1,p2>y1/4

x

p1 p2 log y
<<

x

log y

⎛

⎝
∑

y1/4<p<y

1

p

⎞

⎠

(
∑

q<y

1

q

)

<<
x log log y

log y
.

To bound the second sum in (18) note that if p1 p2 > x/y = x1−1/α , α > 2, then
max(p1, p2) > y1/4 and so

∑

p1,p2<y
max(p1,p2)>x1/4
x/y<p1 p2<x

1 <<
∑

x1/4<p1<y

π

(
x

p1

)

<<
x

log y

∑

x1/4<p1<x

1

p1
<<

x

log y
.

Lastly,

∑

5

=
∑

p1,p2<y1/t

x

log y

w
(
log x −log(p1 p2)

log y

)

p1 p2
+ O

(
x log log y

log2(y)

)

= w(α)
x

log y

∑

p1,p2<y1/t

1

p1 p2
+ O

⎛

⎝ x

log2 y

∑

p1,p2<y1/4

log(p1 p2)

p1 p2

⎞

⎠

123

Author's personal copy



130 K. Alladi, T. Molnar

= w(α)
x

log y

(log log(y1/4))2

2
+ O

(
x log log y

log y

)

(19)

so that from (16), (17), (18), and (19), we have

N2(x, y) = w(α)
x(log log y)2

2 log y
+ O

(
x log log y

log y

)

.

In the above equation it does not matter whether we have log x or log y in the denom-
inator of the error term, but we have preferred log y for reasons which will become
clear in the sequel.

This method can be used for k > 2, the major difference in this case being that the
primes in the above sum which were truncated at y1/4 must now be truncated at y1/t

with t = 2k. The method then yields

Theorem 3* For fixed k and fixed α > 2, we have

Nk(x, y) = w(α)
x

log y

(log log y)k

k! + O

(
x(log log y)k−1

(k − 1)! log y
log k

)

.

Remark In Theorem 3* the log k factor in the error term is due to

∑

y1/2k≤p≤y

1

p
� log k.

We will see in Sect. 6 that by analytic methods, we can derive an estimate of
Nk(x, y) for fixed α > 2 which is superior to Theorem 3*.

4 Estimate of Sz(x, y) for large y, for Re(z) > 0

This section will focus on estimates for Sz(x, y) for large values of y. By large we
mean values of y such that y ≥ exp

(
log1−ε x

)
for any sufficiently small ε > 0.

Our asymptotic estimates for these large values of y are valid only when Re(z) > 0.
Nevertheless, a result of Tenenbaum [15] (discussed later) ensures that this is all the
information that we need.

Let us begin with the case y ≥ x . Let R > 0 be arbitrary but fixed. For |z| ≤ R,
with r = Re(z), we have

Sz(x, y) = Sz(x, x) = g(1, z)

�(z)

x

log1−z x
+ O

(
x

log2−r x

)

(20)

by the work of Selberg [12]. We shall see that the limit

mz(α) := lim
x→∞

Sz(x, y)

x/ log1−z y
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exists for α > 1. However, for 0 < α ≤ 1 we may rewrite equation (20) as

Sz(x, y) = mz(α)
x

log1−z y
+ Oα

(
x

log2−r y

)

,

where

mz(α) = g(1, z)

α1−z�(z)
.

With the aid of the following lemma we will be able to show that the function mz(α)

does in fact exist for larger ranges of α.

Lemma 5 For x ≥ yh ≥ y ≥ 3 and |z| ≤ R, we have

Sz(x, y) = Sz(x, y
h) + (1 − z)

∫ x

y
Sz(x/t, t)

dt

log t
+ O(xE(y) logR+2 x),

where E(y) bounds from above the relative error in the Prime Number Theorem.

Proof From the generalization of the sieve to strongly multiplicative functions g(n)

as in [4], we may choose g(n) = zωy(n) to conclude that

Sz(x, y) = Sz(x, y
h) + (1 − z)

∑

y≤p≤yh

Sz(x/p, p). (21)

From the above equation we see that the lemma will be proven provided

∑

y≤p≤yh

Sz(x/p, p) =
∫ yh

y
Sz(x/t, t)

dt

log(t)
+ O(xE(y) logR+2(x)).

To establish this, we decompose the intervals in a certain way. When p ≤ n and
t ≤ n we estimate the sum by decomposing the interval [1, n] into the subintervals
I1 = [1, p1], I2 = (p1, p2], ..., Iω(n) = (pω(n)−1, pω(n)], Iω(n)+1 = (pω(n), n],
where p1 < p2 < ... < pω(n) denote the distinct prime divisors of n. If χ j (t) denotes
the characteristic function of the interval I j , then in this case the sum in (21) equals

=
∑

n≤x/y

ω(n)+1∑

j=1

⎛

⎝
∑

y<p<min(x/n,yh)

χ j (n)zωp(n) −
∫ min(x/n,yh)

y
χ j (t)z

ωt (n) dt

log t

⎞

⎠

=
∑

n≤x/y

ω(n)+1∑

j=1

zωp j (n)

⎛

⎝
∑

y<p<min(x/n,yh)

1 −
∫ min(x/n,yh)

y

dt

log t

⎞

⎠
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<<
∑

n≤x/n

ω(n)+1∑

j=1

(1 + [R])ω(n) x

n
E(y) = xE(y)

∑

n≤x/y

(1 + [R])ω(n)

n
(ω(n) + 1)

<< xE(y) log x
∑

n≤x/y

(1 + [R])ω(n)

n
<< xE(y) logR+2 x . (22)

The result then follows from (21) and (22). ��

Remark Wewill applyLemma5onlywhen log y >> log x and sobyour assumptions
in Sect. 1, the expression on the right will be o(x/ logU y), for every U > 0.

We now derive an estimate for the series Sz(x, y) with 1 ≤ α ≤ 2 using (21):

Theorem 4 For 2 ≤ √
x ≤ y ≤ x, and z ∈ C, |z| ≤ R, r = Re(z) > 0, we have

Sz(x, y) = mz(α)
x

log1−z y
+ O

( |1 − z|x log log x

log2−r y
+ |1 − z|x log log x

log x

)

,

and

mz(α) = g(1, z)

�(z)

(
1

α1−z
+ (1 − z)

α1−z

∫ α

1

du

uz(u − 1)1−z

)

(23)

for 1 ≤ α ≤ 2.

Proof We begin with (21) and take yh = x to obtain

Sz(x, y) = Sz(x, x) + (1 − z)
∑

y≤p<x

Sz(x/p, p). (24)

For Sz(x, x) = Sz(x), we state the Selberg estimate for Sz(x) in the form

Sz(x) = g(1, z)

�(z)

x

max (log x, 2)1−z + O

(
x

max (log x, 2)2−r

)

. (25)

Now, if
√
x ≤ y ≤ x and y ≤ p < x , then x/p ≤ √

x ≤ y ≤ p so that the sum in
(24) becomes

∑

y≤p<x

Sz(x/p, p) =
∑

y≤p<x

Sz(x/p) =
∫ x

y
Sz(x/t)

dt

log t
+ O(xE(y) logR+2 x)

by the results in Lemma 6. It therefore suffices to obtain an accurate estimate of the
above integral, which can be done by applying Lemma 6 in the following form:
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∫ x

y
Sz(x/t)

dt

log t
= g(1, z)

�(z)

∫ x/e2

y

x

t log1−z(x/t)

dt

log t

+ O

(∫ x/e2

y

x

t log2−r (x/t)

dt

log t
+

∫ x

x/e2

x

t

dt

log t

)

. (26)

If we put t = x1/u , the first integral in (26) becomes

∫ x/e2

y

x

t log1−z(x/t)

dt

log t
= x

log1−z x

∫ α

(
1− 2

log x

)−1

du

uz(u − 1)1−z
. (27)

Also, the second integral in the O-term in (26) is

∫ x

x/e2

x

t

dt

log t
<<

x

log x
. (28)

We see from (26), (27), and (28) that

∫ x

y
Sz(x/t)

dt

log t

= g(1, z)

�(z)

x

log1−z x

∫ α

(
1− 2

log x

)−1

du

uz(u − 1)1−z
+ O

(

I2 + x

log x

)

, (29)

where

I2 :=
∫ x/e2

y

x

t log2−r x/t

dt

log t
.

We write the integral in the main term of Eq. (29) as

∫ α

(
1− 2

log x

)−1

du

uz(u − 1)1−z
=

∫ α

1

du

uz(u − 1)1−z
−

∫
(
1− 2

log x

)−1

1

du

uz(u − 1)1−z
.

(30)

Note that 1 ≤ α ≤ 2 so that if Re(z) > 0, then

∣
∣
∣
∣

∫ α

1

(u − 1)z−1

uz
du

∣
∣
∣
∣ < ∞.

Here is where we must use the fact that Re(z) > 0, as the first integral on the right in
(30) would not converge if �(z) ≤ 0.
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Next we wish to bound the second integral on the right in (30). To that end

∣
∣
∣
∣
∣
∣

∫
(
1− 2

log x

)−1

1

du

uz(u − 1)1−z

∣
∣
∣
∣
∣
∣
<<

∫
(
1− 2

log x

)−1

1

du

(u − 1)1−r
<<

1

logr x
;

and consequently

∫ α

(
1− 2

log x

)−1

du

uz(u − 1)1−z
=

∫ α

1

du

uz(u − 1)1−z
+ O

(
1

logr x

)

. (31)

The evaluation of the integral I2 is similar to what we have done for the main term,
except here we must show care when r = Re(z) is close to 1. This is achieved by
considering the two cases: |Re(z) − 1| > 1

5 log log x and |�(z) − 1| ≤ 1
5 log log x . The

substitution t = x1/u shows that

I2 = O

(
x log log x

log2−r (x)

)

for Re(z) ≥ 1 and

I2 = O

(
x log log x

log x

)

when �(z) < 1. Thus

∫ x

y
Sz(x/t)

dt

log t

= g(1, z)

�(z)

x

log1−z x

∫ α

1

du

uz(u − 1)1−z
+ O

(
x log log x

log x
+ x log log x

log2−r (x)

)

,

from (31), and so the result follows.
We may also note that if r ∈ R

+ then the preceding result can be stated without the
log log x , that is

Theorem 4* For 2 ≤ √
x ≤ y ≤ x, and z = r > 0, we have

Sr (x, y) = mr (α)
x

log1−r (y)
+ O

(
x

log2−r (y)
+ x

log(x)

)

,

where mr (α) is given by (23).

We may now use Buchstab’s recurrence (24) to derive an estimate for Sz(x, y) for
α ≥ 2 by applying induction on [α]. Fortunately, we will also deduce an asymptotic
estimate for Sz(x, y) when Re(z) > 0 for y outside the range of Corollary 1. First we
prove
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Theorem 5 Let |z| ≤ R, and r = Re(z) > 0. Then for arbitrary but fixed α > 2, we
have

Sz(x, y) = xmz(α)

log1−z y
+ O

(
x log log x

log2−r y
+ x log log x

log y

)

,

where for α > 2, mz(α) is given by

mz(α) = 21−zmz(2)

α1−z
+ 1 − z

α1−z

∫ α

2

mz(u − 1)

uz
du. (32)

Proof Setting yh = √
x in (21), we have

Sz(x, y) = Sz(x,
√
x) + (1 − z)

∑

y≤p≤√
x

Sz(x/p, p)

= 21−zmz(2)

α1−z

x

log1−z y
+ O

( |1 − z|x log log x

log2−r (y)

)

+ (1 − z)
∫ √

x

y
mz

(
log(x/t)

log t

)
x/t

log1−z t

dt

log t

+ O

(

|1 − z|
∫ √

x

y

x log log x/t

t log2−r t

dt

log t

)

+ O

(

|1 − z|
∫ √

x

y

x log log x

t log2 t
dt

)

+ O(xE(y) logR(x)),

as
√
x = yα/2. With the familiar substitution of t = x1/u we obtain from the above

Sz(x, y) = 21−zmz(2)

α1−z

x

log1−z y
+ O

(
x log log x

log2−r y

)

+ (1 − z)

α1−z

x

log1−z y

∫ α

2
mz(u − 1)

du

uz
+ O

(
x log log x

log2−r y

)

+ O

(
x log log x

log y

)

.

Hence the theorem follows from this with mz(α) as defined in (32) above.
From the definition of mz(α) in (32), we see that

α1−zmz(α) − (α − 1)1−zmz(α − 1) = (1 − z)
∫ α

α−1

mz(u − 1)

uz
du,
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for α ≥ 3. This can be rewritten as

mz(α) := mz(α − 1)(α − 1)1−z

α1−z
+ (1 − z)

α1−z

∫ α

α−1
mz(u − 1)

du

uz
.

We next derive an improvement of Theorem 5 in which the asymptotic estimate
will hold for α tending to infinity with x . ��
Theorem 6 Let α ≥ 1, and |z| ≤ R. If r = Re(z) ≥ 1, then there exists an absolute
constant K = K (R) such that

∣
∣
∣
∣Sz(x, y) − mz(α)

x

log1−z y

∣
∣
∣
∣ <<

αK x log log x

log2−r y
,

and if 0 < δ ≤ r = Re(z) < 1, then

∣
∣
∣
∣Sz(x, y) − mz(α)

x

log1−z y

∣
∣
∣
∣ <<

αK x log log x

log y
.

Proof It suffices to prove the theorem for α > 3, in which case we can use (32). Let
y = x1/α , yh = x1/(α−1), and u = log x

log t . Lemma 6 shows that, with this notation,

Sz(x, y)

= Sz(x, y
h) + (1 − z)

∫ yh

y
Sz(x/t, t)

dt

log t
+ O

(
xα|z|+1E(y) logR+2(y)

)
.

(33)

Assume that Re(z) ≥ 1. We shall prove the result by induction on α. Assume that
there exists a positive, non-decreasing function φ(u) such that for all u ≤ α − 1 and
x > y > 1 we have

∣
∣
∣
∣Sz(x, t) − mz(u)

x

log1−z(t)

∣
∣
∣
∣ <

φ(u)x log log x

log2−r t
. (34)

Theorem5 establishes the validity of (34)whenα ∈ [2, 3]. By the inductive hypothesis
of (34) and (33) we now obtain

Sz(x, y) = mz(α − 1)

(
α − 1

α

)1−z x

log1−z y

+ O1

((
α − 1

α

)2−r
φ(α − 1)x log log x

log2−r y

)

+ (1 − z)
∫ yh

y
mz

(
log x − log t

log t

)
x

t log2−z t
dt
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+ O1

(

|1 − z|
∫ yh

y
φ

(
log x − log t

log t

)
x log log x

t log3−r t

)

dt

+ O(xE(y)α|z| logR+2 y), (35)

where the notation O1 implies that the implicit constant is≤ 1 (whichwill be important
when iterating the process). We will see that the first and third terms in the above
recurrence will make the largest contribution. Note that with t = x1/u

mz(α − 1)

(
α − 1

α

)1−z x

log1−z y
+ (1 − z)

∫ yh

y
mz

(
log x − log t

log t

)
x

t log2−z t

= mz(α − 1)

(
α − 1

α

)1−z x

log1−z y
+ (1 − z)

α1−z

x

log1−z y

∫ α

α−1
mz (u − 1)

du

uz

= mz(α)
x

log1−z y
, (36)

from (32). We conclude from (35) and (36) that

Sz(x, y) = mz(α)x

log1−z y
+ O1

((
α − 1

α

)2−r
φ(α − 1)x log log x

log2−r y

)

+ O1

(

|1 − z|x log log xφ(α − 1)
∫ yh

y

dt

t log3−r t)

)

+ O(xα|z|+1E(y) logR+2 y). (37)

If Re(z) 	= 2 the integral in (37) will be equal to

∫ yh

y

dt

t log3−r (t)
= logr−2(yh)

r − 2
− logr−2 y

r − 2

= 1

r − 2)

1

log2−r y

(

1 − 1

h2−r

)

,

and

1 − 1

h2−r
= 1 −

(

1 − 1

α

)2−r

= O

( |2 − r |
α

)

. (38)

If �(z) = 2, then the integral is

∫ yh

y

dt

t log3−r t
=

∫ yh

y

dt

t log t
= log h

= log

(
α

α − 1

)

= 1 + O

(
1

α

)

. (39)
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From Eqs. (37), (38), and (39) Eq. (35) becomes

Sz(x, y) = mz(α)x

log1−z y
+ O1

((
α − 1

α

)2−r
φ(α − 1)x log log x

log2−r y

)

+ O1

( |1 − z|x log log xφ(α − 1)

log2−r y

C

α

)

. (40)

We are free to choose our function φ(u) to satisfy

φ(α) < φ(α − 1)

(
α − 1

α

)1−r

+ φ(α − 1)
|1 − z|C

α
≤ φ(α − 1)

(

1 + |1 − z|C ′

α

)

.

��
Because the function φ(α) is defined recursively we may estimate its growth rate

by noting that for any j ∈ Z, 0 ≤ j ≤ α − 2

φ(α − j)

φ(α − j − 1)
< 1 + |1 − z|C

α − j
;

hence,

φ(α) = φ(α)

φ(α − 1)

φ(α − 1)

φ(α − 2)
...

φ(2)

φ(1)
<

∏

0≤ j≤α−1

(

1 + |1 − z|C
α − j

)

=
∏

1≤ j≤α

(

1 + |1 − z|C
j

)

<< αC|1−z|.

Collecting the above results, we conclude that

∣
∣
∣
∣Sz(x, y) − mz(α)

x

log1−z(y)

∣
∣
∣
∣ <

αC|1−z|x log log x

log2−r (y)
,

with the constant K = K (R) = C |1 − z|, thereby proving the first statement of
Theorem 6.

If 0 < r = Re(z) < 1 then the method of Alladi in [1] shows that
∣
∣
∣
∣Sz(x, y) − mz(α)

x

log1−z(y)

∣
∣
∣
∣ ≤ αx log log x

log y

in place of (34). The second statement of the theorem then follows by repeating the
above induction procedure.

The preceding theorem gives the desired uniform result we need to analyze the sum
Sz(x, y) for large values of y. Let r = Re(z) ≥ δ > 0 and consider

logδ y = αK log log x =
(
log x

log y

)K

log log x ≤ logK+ε x

logK y
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for some 0 < ε < δ, so that

log y = log(k+ε)/(k+δ) x = log1−δ′
x,

where

δ′ = δ − ε

k + δ
, and y = exp(log1−δ′

(x)).

Therefore, we obtain an asymptotic estimate of Sz(x, y) from Theorem 6 when y ≥
elog

1−δ′ (x), which is larger than the range specified in Corollary 1.
Let us pause for a moment and reflect on what has just been proven. In Corol-

lary 1 we obtained an asymptotic formula for Sz(x, y) (|z| ≤ R), provided y ≤
x1/(R+D+1+ε) log log x ; however, Theorem 6 gives an asymptotic formula (for Re(z) >

0, |z| ≤ R) provided y ≥ x1/ log
δ′ x . Observe that for x sufficiently large, we have

x1/ log
δ′ x ≤ x1/(R+D+1+ε) log log x

so the ranges of Corollary 2 and Theorem 6 overlap. We have by virtue of Theorem 6
and Corollary 2 derived an asymptotic formula for all y ≤ x if R ≥ Re(z) > 0 (note,
however, that the results of Corollary 2 are true with only the restriction |z| ≤ R).
This uniform estimate will be one of the main tools utilized in Sect. 6 for the study of
the local distribution of small prime factors.

5 Properties ofmz(˛)

In this section, we shall study the properties of the function mz(α) arising in Theorem
5. Throughout this section, α is just a positive real number, although in applying our
results on mz(α) to Sz(x, y), we will choose α = log x

log y . We have already shown that
mz(α) exists and is given by (32). Thus

α1−zmz(α) = 21−zmz(2) + (1 − z)
∫ α

2
mz(u − 1)

du

uz
;

so that mz(α) satisfies the following difference-differential equation:

(α1−zmz(α))′ = (1 − z)

(
mz(α − 1)

αz

)

, (41)

where m′
z(α) = d

dαmz(α). Equation (41) implies that

α1−zm′
z(α) + (1 − z)α−zmz(α) = (1 − z)mz(α − 1)α−z
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which can be rewritten as

m′
z(α) = 1 − z

α
(mz(α − 1) − mz(α)) = z − 1

α

∫ α

α−1
m′

z(u)du. (42)

The above equation will allow us to derive some useful properties about the conver-
gence of mz(α) as α → ∞.

Lemma 6 For z ∈ C, Re(z) > 0, |z| ≤ R, and α ≥ 2 the function m′
z(α) is differen-

tiable. Moreover, m′
z(α) << e−α logα+OR(α).

Proof We may immediately deduce from (42) that m′
z(α) is differentiable. We will

first show that Eq. (42) implies that m′
z(α) is uniformly bounded for α ∈ R, α ≥ 2.

Suppose not. Then |m′
z(α)| assumes all sufficiently large values by continuity.

Define

B := max
α≤|z−1|+1

|m′
z(α)|

and consider a value M > B assumed by |m′
z(α)|. Next, define

α0 := inf{α : |m′
z(α)| = M}

so that |m′
z(α0)| = M and α0 > |z − 1| + 1. Now, from (42) we see

M = |m′
z(α0)| ≤ |z − 1|

α0

∫ α0

α0−1
|m′

z(t)|dt <
|z − 1|

α0
M < M,

a contradiction. It follows that

{α : |m′
z(α)| = M} = ∅

for each M > B, so that max |m′
z(α)| ≤ B.

Using the above analysis, and again invoking equation (42), we see that

|m′
z(α)| = |1 − z|

α

∣
∣
∣
∣

∫ α

α−1
m′

z(u)du

∣
∣
∣
∣ ≤ |1 − z|

α

∫ α

α−1
|m′

z(u)|du <
B|1 − z|

α
.

Consider the function supu∈[t,+∞) |m′
z(u)| which is clearly monotone and non-

increasing, so

|m′
z(α)| ≤ |1 − z|

α

∫ α

α−1
sup

u∈[t,+∞)

|m′
z(u)|dt ≤ |1 − z|

α
sup

t∈[α−1,+∞)

|m′
z(t)|

<
|1 − z|

α

( |1 − z|
α − 1

B

)

= |1 − z|2
α(α − 1)

B
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and by iteration

|m′
z(α)| ≤ |1 − z|[α]

�([α] + 1)
B. (43)

Since 1
�(α+1) << e−α logα , we deduce from (43) that

m′
z(α) << e−α logα(1 + R)[α] = e−α logαe[α] log(1+R) = e−α logα+OR(α).

The rapid rate of decay ofm′
z(α) as α → ∞ forces the functionmz(α) to approach

a limit �(z). We have already observed in Sect. 2 that for certain ranges of α = log x
log y ,

the estimate for the sum Sz(x, y) is supplied by Theorem 1. The fact that the ranges of
our estimates overlap will allow us to obtain a representation for the limiting function
�(z). ��
Theorem 7 There exists a function �(z) such that for |z| ≤ R,

mz(α) = �(z) + O(e−α logα+O(α))

as α → ∞, and is given by

�(z) = e(z−1)γ
∏

p

(

1 + z − 1

p

)(

1 − 1

p

)z−1

.

Thus �(z) given by the product is an analytic function of z ∈ C, and is nonzero if z 	= 1
or 1 − p, where p denotes a prime number.

Proof We have seen in Lemma 7 that

d

dα
mz(α) = m′

z(α) <<
|z − 1|α
�(α)

(44)

so that

f (z) :=
∫ ∞

1
m′

z(t)dt (45)

exists, because (44) implies the convergence of the integral in (45). Now,

∫ α

1
m′

z(t)dt = mz(α) − mz(1)

and so

∫ ∞

α

m′
z(t)dt =

∫ ∞

1
m′

z(t)dt −
∫ α

1
m′

z(t)dt = f (z) − mz(α) + mz(1). (46)
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Thus from (46) and (47) we obtain

mz(α) = f (z) + mz(1) + OR(e−α logα+OR(α)) (47)

thereby proving the limit exists with

�(z) = f (z) + mz(1) =
∫ ∞

1
m′

z(t)dt + mz(1).

��
Now, recall from the comments following the proof of Theorem 6 that if we choose

(R+D+2) log log x < α < (R+D+3) log log x then wemay apply both Theorem
6 and Corollary 1; therefore, we need only equate �(z) with the corresponding term
in Corollary 1. For α � log log x Corollary 1 supplies

Sz(x, y)

x/ log1−z y

= log1−z y
∏

p<y

(

1 + z − 1

p

)

+ O

(
1

logε y

)

= e(z−1)γ
∏

p<y

(

1 + z − 1

p

) (

1 − 1

p

)z−1

+ O

(
1

logε y

)

,

so that by letting as x, y, α → ∞ we see that

�(z) = e(z−1)γ
∏

p

(

1 + z − 1

p

)(

1 − 1

p

)z−1

.

Having shown that the limit limα→∞ mz(α) = �(z) exists, it is clear from the
product formula of �(z) that the limit is nonzero for z 	= 1 or 1 − p. However, for
future applications we must demonstrate that mr (α) > 0 for all r > 0. With this in
mind, we now prove the following corollary.

Corollary 3 The function mr (α) > 0 for all real r ≥ 0 and α ≥ 1.

Proof Let 0 ≤ r < 1 so that we may immediately conclude from (20) thatmr (1) > 0.
Now we may proceed by induction on [α] and utilize (32) to see that mr (α) > 0 for
all α ≥ 1.

If r = 1 then the function m1(α) ≡ 1, so we need only consider the case when r
is greater than 1 for the corollary to be proven. However, if r > 1 then for a fixed x ,
Sr (x, y) = ∑

n≤x r
ωy(n) will be an increasing function of y and, consequently Sr (x, y)

will be a decreasing function of α. Let us define the function m∗
r (α) to satisfy

Sr (x, y) = m∗
z (α)

x

log1−r x
+ O

(
x log log x

log2−r x
+ x log log x

log x

)
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and so m∗
r (α)αr−1 = mr (α), with m∗

r (α) decreasing. As Sr (x, y) > 0 we see that
m∗

r (α) > 0 for all α ≥ 1, and this forces mr (α) > 0 for all α ≥ 1. ��

Theorem 8 For each α > 1

lim
r→0+ mr (α) = w(α).

Proof Note that for r > 0, 1 < α < 2, mr (α) is given by

mr (α) = s(r)

α1−r
+ (1 − r)s(r)

α1−r

∫ α

1

du

ur (u − 1)1−r
,

where s(r) = g(1, r)/�(r), and for α > 2

(
α1−rmr (α)

)′ = (1 − r)
mr (α − 1)

αr
. (48)

Clearly when r → 0+, the differential equation in (48) coincides with that of the
Buchstab function given in Sect. 3. So we only prove that limr→0+ mr (α) = w(α),
for 1 < α < 2. So we must show that

lim
r→0+

(
s(r)

α1−r
+ (1 − r)s(r)

α1−r

∫ α

1

du

ur (u − 1)1−r

)

= 1

α
.

Since limr→0+ s(r) = 0, we must show that

lim
r→0+

(1 − r)s(r)

α1−r

∫ α

1

du

ur (u − 1)1−r
= 1

α
. (49)

Note that s(r) ∼ r as r → 0+, because g(1) = 1 and �(r) has a simple pole with
residue 1 at r = 0. Using u−r = e−r log(u) = 1 + O(r), for 1 < u < α < 2 and
r → 0+, we have

∫ α

1

du

ur (u − 1)1−r
=

∫ α

1
(1 + O(r))

du

(u − 1)1−r

=
∫ α

1

du

(u − 1)1−r
+ O

(

r
∫ α

1

du

(u − 1)1−r

)

= (α − 1)r

r
+ O((α − 1)r ). (50)

From (50) we obtain

(1 − r)s(r)

α1−r

∫ α

1

du

ur (u − 1)1−r
= (1 − r)s(r)

α1−r

(
(α − 1)r

r
+ O((α − 1)r )

)

, (51)
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and taking the limit as r → 0+ in (51) gives the limit in (49) as

= lim
r→0+

(1 − r)s(r)

α1−r

(
(α − 1)r

r
+ O((α − 1)r )

)

= 1

α
lim

r→0+
s(r)

r
= 1

α
.

This proves the theorem. ��
Remark We had defined mz(α) only for Re(z) > 0, but S0(x, y) = �(x, y). Thus it
is important to establish Theorem 8, from which we could interpret w(α) as m0(α).

6 The local distribution of the number of small prime factors

In this section, we will apply the analytic results obtained in Sects. 2, 4, and 5 to study
the function Nk(x, y) by the contour integral method of Selberg in [12], by which we
mean that we will apply the Cauchy integral formula to Sz(x, y) in the following form

Nk(x, y) = 1

2π i

∫

∂Uρ

Sz(x, y)

zk+1 dz, (52)

Uρ being the circle of radius ρ centered at the origin. We will begin with an analysis
of the results which can be obtained from Theorem 1, which holds uniformly for small
y and |z| ≤ R. We will then study Nk(x, y) for large values of y, in which case our
results only apply for Re(z) > 0. However, as was alluded to at the end of Sect. 4,
Theorem 11 due to Tenenbaum [15] will allow us to estimate Nk(x, y) for large values
of y provided we have an estimate for Sr (x, y) for real r > 0, which will be supplied
by the results of Sect. 4.

Tenenbaum [14,17] has also supplied the following alternative representation for
the function mr (α):

Theorem 9 We have

mr (α) = C(r)

(∫ α−1

0
w(α − t)ρr (t)dt + ρr (α)

)

,

where w(u) is the Buchstab function, ρr (u) is a function which for 0 < u ≤ 1 equals

ρr (u) = ur−1

�(r)

and for u > 1 satisfies the differential equation

uρ′
r (u) + (1 − r)ρr (u) + rρr (u − 1) = 0,

and

C(r) =
∏

p

(

1 − 1

p

)r (

1 + r

p − 1

)

.
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The function ρz arises in the asymptotic analysis of

�z(x, y) =
∑

n≤x
P+(n)≤y

zω(n),

where

�z(x, y) ∼ ρz(α)
x

log1−z(y)
.

In particular, ρz(α) = e−α logα+O(α). This rapid decay, coupled with the fact that

∫ ∞

0
ρz(α)dα = ezγ ,

ensures that mr (α) → �(r).
The Selberg method can now be applied to the results of Theorem 1. The conse-

quence is the following theorem, which provides an estimate of Nk(x, y) for small
values of y.

Theorem 10 There exists a constant C > 0 such that if α > C log log x, k ≥ 1, and
r > 0, then

Nk(x, y) = �

(
k

log log y

)
x

log y

(log log y)k

k!
(

1 + O

(
k

(log log y)2

))

,

uniformly for k ≤ r log log y.

Remarks Our proof is based upon themethodof Selberg in [12] (generalized inChapter
II.6.1 of [13]). However, there is an important difference between his approach and
the following proof of Theorem 10. In Selberg’s estimate for the sum Sz(x), there is a
1

�(z) factor which will, by virtue of the functional equation of the �-function, absorb

the factor 1
z in 1

zk+1 in Eq. (52). In view of this, Selberg’s choice for the radius of the

circle in (52), namely ρ = k−1
log log x , is optimal due to the vanishing of a first-order error

term similar to what is given in (59) below. In contrast, our estimate of Sz(x, y) does
not contain a factor involving the �-function, and since the function �(z) in Theorem
7 has the property that �(0) 	= 0, it does not absorb any of the factors of z−k−1 at
z = 0. We will see in the course of the proof of Theorem 10 that the optimal choice
for the radius in (52) will be ρ = k

log log y (to ensure the vanishing of the first-order
error term in the estimation of Sz(x, y)). The absence of the �-function is the reason
why Nk(x, y) is to be compared with Nk+1(x) and as will be seen below.

Proof From Theorem 1, with |z| ≤ R, we have, for

y ≤ x1/(R+D+2) log log x ,
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(D the constant in Theorem 1) equivalently, α ≥ (R + D + 2) log log x

Sz(x, y) = x
∏

p<y

(

1 + z − 1

p

)

+ O(xe−α logD(x)) + O

(
x

logR+2 x

)

.

The above equation is then

Sz(x, y) = �(z)
x

log1−z y
+ O

(
x

log2−r y

)

and so

Nk(x, y) = 1

2π i

∫

|z|=ρ

Sz(x, y)
dz

zk+1

= x

2π i log y

∫

|z|=ρ

�(z) logz y

zk+1 dz + O

(
x

log2 y

∫

|z|=ρ

logRe(z) y

|z|k+1 |dz|
)

= x

log y

1

2π i

∫

|z|=ρ

�(z) logz y

zk+1 dz + O

(
x

log2 y

er log log y

rk+1 r

)

(53)

as Re(z) ≤ |z| = ρ. Upon choosing ρ = k
log log y , (53) yields

= x

log y

1

2π i

∫

|z|=ρ

�(z) logz y

zk+1 dz + O

(
x

log2 y

ek

kk
(log log y)k

)

= x

log y

1

2π i

∫

|z|=ρ

�(z) logz y

zk+1 dz + O

(
x

log2 y

√
k(log log y)k

k!

)

(54)

from a weak form of Stirling’s formula k! << kk+1/2e−k . ��
Recall Theorem 7 where it was noted that �(z) is analytic, and so we may write

�(z) = �(ρ) + �′(ρ)(z − ρ) + O((z − ρ)2) (55)

so that using (55) we may represent the integral on the right of (54) in the following
form

x

log y

1

2π i

∫

|z|=ρ

�(z) logz y

zk+1 dz

= x

log y

�(ρ)

2π i

∫

|z|=r

ez log log y

zk+1 dz + x

log y

�′(ρ)

2π i

∫

|z|=ρ

(z − ρ)
ez log log y

zk+1 dz

+ O

(
x

log y

∫

|z|=ρ

(z − ρ)2
logRe(z) y

zk+1 dz

)

= I1 + I2 + I3.
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The integral I1 maybe easily evaluated bydirect appeal to theCauchy integral formula:

I1 = x

log y

�(ρ)

2π i

∫

|z|=ρ

ez log log y

zk+1 dz = �

(
k

log log y

)
x

log y

(log log y)k

k! (56)

upon identifying the integral with the coefficient of zk in the series expansion of
ez log log y . With regard to the integral I2, note that

�′(ρ)

2π i

∫

|z|=ρ

(z − ρ)
ez log log y

zk+1 dz

= �′(ρ)

2π i

∫

|z|=ρ

ez log log y

zk
dz − �′(ρ)

2π i
ρ

∫

|z|=ρ

ez log log y

zk+1 dz

= �′(ρ)
(log log y)k−1

(k − 1)! − �′(ρ)ρ
(log log y)k

k! . (57)

With the choice of ρ = k
log log y , (57) becomes

I2 = 0. (58)

Equation (58) demonstrates why choosing ρ = k
log log y is the best possible choice.

Any other value for ρ in (58) would contribute an error term which would not be zero.
It remains to estimate the third integral I3. Let us set z = ρe2π iθ for − 1

2 ≤ θ ≤ 1
2 ,

so that

z − ρ = 2ieπ iθρ
(eπ iθ − e−π iθ )

2i
= 2ieπ iρ sin πθ << ρθ.

Thus

(z − ρ)2 << ρ2θ2.

Next note that

| logz y| = |ez log log y | = eRe(z) log log y = eρ cos 2πθ log log y

≤ eρ(1−λθ2) log log y = ek(1−λθ2) (59)

by again using the fact that ρ = k/ log log y, and where λ > 0 is some small fixed
constant. Applying the bound in (59) to the integral I3 we see

I3 <<

∫ 1/2

−1/2

xρ2θ2

log(y)

eke−kλθ2r |e2π iθ |
rk+1 dθ

<<
x

log y

ek

ρk−2

∫ 1/2

−1/2
θ2e−kλθ2dθ <<

x

log(y)

ek

rk−2

∫ ∞

0
θ2e−kλθ2dθ
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which after the substitution
√
kθ = u yields

x

log(y)

ek

ρk−2

∫ ∞

0

u2e−λu2

k
√
k

du

<<
x

log y

(log log y)k−2

kk−2

ek

k3/2
<<

x

log y

(log log y)k−2

e−kkk−1/2

<<
x

log y

(log log y)k

k!
k

(log log y)2
, (60)

by using Stirling’s formula once more. Combining (60) with the estimates for I1 and
I2 gives

Nk(x, y) = I1 + I2 + I3 = �(ρ)
x

log y

(log log y)k

k!
(

1 + O

(
k

(log log y)2

))

= �

(
k

log log y

)
x

log y

(log log y)k

k!
(

1 + O

(
k

(log log y)2

))

.

It is to be noted that for almost all integers we have ωy(n) ∼ log log y, and for this
situation

x

log y

(log log y)k

k! ∼ x

log y

(log log y)k−1

(k − 1)! .

On the other hand, if k ∼ λ log log y with λ 	= 1, then

x

log y

(log log y)k−1

(k − 1)! ∼ λ
x

log y

(log log y)k

k! ,

that is, the terms differ by a factor of λ.
We will now study Nk(x, y) for large y. Tenenbaum [14] has communicated to us

that by suitably adapting the powerful techniques of [15] to Sz(x, y), one may derive
an effective estimate for Nk(x, y) for certain ranges of k. These estimates follow from
a suitable upper bound for Sz(x, y)when |z| = r but z is not close to r , and asymptotic
estimates for Sz(x, y) when z is close to r . Since the statement of his result involves
Sz(x, y) only when z = r is real, we have ρ = r as well. The form in which we will
use his result is

Theorem 11 Let 0 < κ < 1 be a small parameter, r = k
log log y+c1

, where

c1 := lim
y→∞

∑

p<y

1

p
− log log y.
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Then for κ ≤ r ≤ 1/κ ,

Nk(x, y) = Sr (x, y)
(log log y + c1)k

k!ek
(

1 + O

(
1√

log log y

))

uniformly for 1 ≤ α ≤ (log log x)2.

Remark If one chooses r = k
log log y in Theorem 11 then the result becomes

Nk(x, y) = Sr (x, y)
(log log y)k

k!ek
(

1 + O

(
1√

log log y

))

(61)

which is more convenient.

Theorem 11 is interesting for several reasons. Firstly, it gives a relationship between
the coefficients Nk(x, y) of zk in the sum Sz(x, y) with the sum itself. Secondly, the
size of sum Sz(x, y) is utilized onlywhen z = r is real-valued and positive. Thankfully,
the results of Sect. 4 apply in this situation and so we get the following theorem.

Theorem 12 Let κ > 0, r = k
log log y , and κ ≤ r ≤ 1/κ , then

Nk(x, y) = mr (α)
x(log log y)k

k! log y

(

1 + O

(
1√

log log y

))

uniformly for 1 ≤ α ≤ (log log x)2.

Proof By applying the estimate in Theorem 6 this with α ≤ (log log x)2 in (61), we
get

Nk(x, y) = mr (α)
x(log log y)k

k!ek log1−r y

(

1 + O

(
1√

log log y

))

. (62)

As k = r log log y, (62) can be rewritten in the form

Nk(x, y) = mr (α)
x(log log y)k

k! log y

(

1 + O

(
1√

log log y

))

.

Remark We saw in Sect. 4 that when estimating Sz(x, y) for large y, we were forced
to restrict Re(z) > 0, so that a direct application of the Selberg contour integral
method would not be possible without estimates for the case Re(z) ≤ 0. However,
with suitable bounds for Re(z) ≤ 0 the method can still yield the correct asymptotic
equality for Nk(x, y). We note that the methods employed in Sect. 4 will provide us
with the bound of

|Sz(x, y)| <<
x(log log x)K+1

log y
,
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which is uniform provided α << log log x , Re(z) ≤ 0, and |z| ≤ R (and where K is
the constant in Theorem 6). Note that this bound holds in the range α << log log x
which overlaps with the range of α in Sect. 3. Therefore, we could have used this
bound (which is milder than the results of Theorem 11). We made use of Theorem 11
to conclude the main result of Theorem 12 because of the sharpness of the error term
in this theorem.

We note that when k is fixed, then k/ log log y is close to 0. But then mr (α) →
m0(α) = w(α), whichmeans that Theorem 12 in this case corresponds asymptotically
to Corollary 2. Also, if y = x then Theorem 12 implies

Nk(x, y) ∼ Sr (x)

ek
(log log y)k

k! = g(1, r)

�(r)

x

log y

(log log y)k

k!
= g(1, r)r

�(1 + r)

x

log x

(log log x)k

k! = g(1, r)

�(1 + r)

x

log x

(log log x)k−1

(k − 1)! ,

which corresponds to Selberg’s estimate (3) for Nk(x).
It is a matter of taste how one presents the estimate for Nk(x, y). In Theorem 12,

we wrote this in terms of ratios of elementary functions, and in the context of the
results of the previous section, this is the more natural way to present this estimate.
Tenenbaum has communicated Theorem 11 to us as a special case of his general
result in [15] on the local distribution of ω(n; Q). However, as Q is a general set of
primes, it is difficult to expect asymptotic estimates in terms of elementary continuous
functions. Thus, Tenenbaum’s result (Cor 2.4 of [15]) gives an estimate for the local
distribution of ω(n; Q) in terms of Sr (x, Q). If Q has regular behavior, such as when
Q = {p|p < y}, then Sr (x, Q) = Sr (x, y) can be estimated in terms of continuous
functions (see [17]).
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